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a b s t r a c t

At the European Level, SACs (Special Areas of Conservation) are considered among the most reliable tools
for increasing the efficiency of protective actions and to identify species vulnerability hotspots across
spatial scales. Nevertheless, SACs may fail in their scope when design and management are not
dynamically adapted to meet ecological principles. Knowledge of the spatial distribution of relevant key
species, such as common bottlenose dolphin (Tursiops truncatus), is crucial in order to achieve the
objective of the Habitat Directive (92/43/EEC), and is a fundamental step in the process of Marine Spatial
Planning. From this perspective, new data and analysis are required to produce forecasts at spatio-
temporal scales relevant to individual organisms. Here, we propose a study based on a MaxEnt
modelling exercise to define the spatial distributional patterns of bottlenose dolphin at different tem-
poral scales (over periods of multiple months and years) to increase the ecological understanding of how
the species use the eco-space, and to delimit boundaries of a SAC in the waters surrounding Lampedusa
Island, a hotspot for cetaceans in the Southern Mediterranean Sea. We show that bottlenose dolphin
prefer shallower feeding grounds that often host complex and rich food webs, but also that this pref-
erence is constrained by disturbance factors such as boat traffic. As sea-related tourism, including
dolphin-watching, is one of the most important economic activities of the island, the study results can be
used from a management perspective, in order to reach a solution regarding two apparently conflicting
needs - species protection and economic development.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Global environmental change is forcing organisms to acclimate,
adapt and/or migrate to track alterations in their environment
across space and time, and there is a need to improve projections of
the future status of marine biodiversity under rapidly changing
conditions (Pacifici et al., 2015). Large ecosystem shifts are, how-
ever, ultimately driven by cumulative impacts of small-scale pro-
cesses acting at organismal and population levels. In order to
predict future changes in species distributions, new data are
required to produce forecasts at spatio-temporal scales relevant to

individual organisms (Halpern et al., 2015).
Cetaceans are among themost threatenedmarine species. These

threats have become such a concern as to warrant a specific regu-
latory action at the European Community level, as dictated by the
Habitats Directive (Council Directive 92/43/EEC on the Conserva-
tion of natural habitats and of wild fauna and flora). This Directive
aims to establish a network of SACs (Special Areas of Conservation)
that are known collectively as “Natura 2000”. The Natura network
comprises sites identified by the Member States as hosting partic-
ular habitat types (listed in Annex I of the Directive), or the habitats
of particular species (listed in Annex II). To date, two species of
cetaceans have been listed on Annex II, namely the harbour por-
poise (Phocoena phocoena) and the common bottlenose dolphin
(Tursiops truncatus, Montagu, 1821). SACs, and other Marine Pro-
tected Area in general, are considered among themost reliable tools
for increasing the efficiency of conservation actions and for
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defining species vulnerability hotspots across spatial scales (Canada
et al., 2005; Agardy et al., 2011).

Knowing the distribution and ranging patterns of cetaceans is
important for adapting effective boundaries for SACs and MPAs and
is a fundamental requirement for all species listed in the Habitats
Directive. Moreover, knowing the spatial distribution of ecologi-
cally relevant species is also one of the fundamental steps in
achieving the goals of most Marine Spatial Planning Directives
worldwide (e.g., the European Directive 2014/89 “Establishing a
framework for maritime spatial planning”, or the “Interim Frame-
work for Effective Coastal andMarine Spatial Planning” in the USA).
In fact, among basic principles proposed to address Ecosystem-
based Marine Spatial Planning, those dealing with key species,
such as Tursiops truncatus, are essential in increasing the reliability
of management measures (sensu Stamoulis and Delevaux, 2015).
Dolphins are at the top of trophic chains worldwide and they share
the role of ecosystem functioning drivers with a few other top level
species. An anomalous fluctuation in their distributional range due
to the pervasive effects of human actions can alter community
structure and depress ecosystem functioning.

However, for most marine species (such as cetaceans and fish),
identifying marine areas useful to their life and reproduction may
be difficult. The high mobility of many marine species and the
difficulty in observing them may complicate the investigation of
their distribution considerably, increasing research costs and
experimentation time. An effective ecosystem-level management
depends acutely upon the quality of information available, not only
for defining boundaries but also for understanding how these areas
are used by animals, and which components (biotic, abiotic and
factors of anthropogenic origin) influence their distribution and
abundance (Wilson et al., 1997). Marine mammals are recognized
as not permanently resident species (Wilson et al., 1997), and this
makes the design of SACs/MPAs and the related management ac-
tions highly challenging. Even if many cetaceans have been shown
to display relatively consistent preferences in terms of environ-
mental variables and bottom topography (Hastie et al., 2005), few
studies have predicted the habitat use of bottlenose dolphins in
relation to environmental variables through the application of
species distribution modelling (SDMs) in the Mediterranean Sea
(Canadas et al., 2002, 2005; Azzellino et al., 2008, 2012; Gomez
et al., 2008; Marini et al., 2014). SDMs have a long tradition in
ecology to help both researchers and managers to increase their
understanding of current species distribution patterns, and to
predict future distributions in the face of climate change, human-
assisted invasions, and many other ongoing environmental
changes (Yackulic et al., 2013). One of the most recently used SDMs
is that based on the Maximum Entropy (MaxEnt) method. MaxEnt
is a presence-only statistical model, and it is highly reliable in
producing useful predictions when absence data are not available
or not sufficiently reliable. In the case of cetacean sampling, many
locations cannot be surveyed systematically or may receive little
survey effort, leading to a lack of definitive absence data. MaxEnt
represents the most effective correlative modelling approach in
context of SDM (Guisan and Thuiller, 2005), providing an important
ecological tool for the prediction of species geographical distribu-
tion within the context of environmental change from local to
global. MaxEnt attempts to minimize the relative entropy between
two probability densities, one estimated from occurrence data and
the other from the background environment defined in covariate
space (Elith et al., 2011). The maximum entropy distribution is built
only from what is known about the occurrence of the species and
its associated variables, while avoiding making assumptions about
anything unknown (Jaynes, 1989). This method is especially useful
for modelling species distributions with incomplete information on
sampling effort and not independent data, and is becoming an

increasingly important tool in the field of marine conservation and
management (Edren et al., 2010; Thorne et al., 2012). Moreover,
MaxEnt has a predictive power that is consistently competitive
with the highest performing methods (Elith et al., 2006, 2011).
Here, we used MaxEnt to define the spatial distribution pattern of
T. truncatus, at different temporal scales (years and months) in or-
der to increase the ecological knowledge about the species, and to
define boundaries of a SAC in the waters surrounding the Archi-
pelago of Pelagie (Southern Mediterranean Sea). Such an area is a
key habitat for cetaceans (Ben Naceur et al., 2004; Canese et al.,
2006) and meets all the criteria required for the localization of
SACs: i) the continuous or regular presence of the species, as
demonstrated in the past and in the present study on the basis of
MaxEnt predictions; ii) good population density, in relation to
neighbouring areas (Pulcini et al., 2010); iii) high ratio of juveniles
to adults all year round (Pace et al., 2003).

2. Methods

2.1. Study area

Lampedusa is the biggest island in the Archipelago of Pelagie
(Southern Mediterranean Sea), with an extension of 20 km2 and a
length of 10.5 km. It is located on the northern African continental
shelf, about 130 km from the Tunisian coast and 205 km from the
Sicilian coast. This region is an exchange area for the water masses
of the eastern and western Mediterranean basins, with a complex
bathymetry that strongly influences water currents (Pernice, 2002).
A coastal portion of this zone was declared a Marine Protected Area
by the Italian Ministry of the Environment in 2002. The protected
area covers an area of 4136 ha and encompasses three zones with
different protection regimes (integral, general and partial). In 2005,
the local Sicilian Government established a Site of Community
Importance (SIC eITA040002) whose marine area corresponded to
the boundaries of the MPA. The study area extended approximately
7 nautical miles offshore covering an area of 992 km2 (Fig. 1).
Lampedusa is inhabited by about 6100 persons and tourism rep-
resents the most important source of economic income. This is
showed by the increase of the touristic presence during summer
(from a few thousands in winter to almost 30,000 in summer;
LEGAMBIENTE, 2009). Despite the fact that the Archipelago is
characterized by relatively low human impact for the majority of
the year, the waters surrounding Lampedusa are characterized by
highly concentrated heavy boat traffic, from July to September,
when tourism is at its highest. In this period, recreational motor-
boats (small motorized and/or inflatable rental boats and water-
craft) making excursions around the island and dolphin-watching
trips (both organized and accidental) represent the largest
component of boat traffic in thesewaters (approximately 90% of the
total; La Manna et al., 2010). Other than tourism, fishery is the other
important economic activity for the island inhabitants. The local
fishery fleet consists of 95 operating boats with fishing licences; the
most common systems are bottom trawls, hand lines, trolling lines
and, after these, gill nets, long lines, pots and purse seines.(Celoni
et al., 2007). The main fishing area is localized in the southern
part of the island, down to 50 m depth (La Manna pers. obs.).
Furthermore, owing to the great abundance of fish (among the
highest in the Mediterranean Sea - Gristina et al., 2006), Lamp-
edusa's waters are used by several trawlers from the mainland of
cross-border Mediterranean countries.

2.2. Data collection

Sightings of T. truncatus were collected during the dedicated
boat survey, following a standard research protocol, on board 5 m
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and 7 m length inflatable boats. From May to October, between
2005 and 2009 and during 236 surveys, 6169 km were surveyed,
and a total of 243 sightings were recorded. (Table 1). Surveys fol-
lowed a random sampling design and routes were planned to ho-
mogeneously cover the study area, with a generally perpendicular
direction with respect to the coast and depth contours. At least two
experienced observers scanned the sea surface at an average boat
speed between 10 and 16 km per hour, during daylight and with a
visibility of over 3miles. Navigation routes were interrupted in case
of sighting or when sea conditions deteriorated (sea state > 2
Douglas; wind force > 2 Beaufort). A dolphin sighting was defined
as an observation of one or a group of dolphins. A group was
defined as dolphins observed in apparent association, moving in
the same direction and often, but not always, engaged in the same
activity (Shane, 1990). The position of the boat (automatically
recorded every minute) and the location of each sighting were
recorded using a Garmin handheld GPS. During each dolphin
sighting data about group size and estimated sex and age classes
were recorded together with photo-identification data and
behavioral states of the group (by focal group sampling). For the
elaboration of the spatial model each dolphin sighting was treated
as one presence record regardless of group size.

Occurrence data and environmental variables were elaborated
with ESRI ArcMap 9.3. Cetaceans may differentially select habitats
in relation to environmental conditions, topographic features, and
prey availability (Canadas et al., 2002; Davis et al., 2002; Gomez
et al., 2008; Azzellino et al., 2008, 2012; Thorne et al., 2012;

Marini et al., 2014; Bohrer do Amaral et al., 2015). Thus, the selec-
tion of environmental variables that are functionally relevant to
species is an important phase of any species modelling process, as
they represent good proxies for prey availability, good calving area
or protection from risks. Based on previous cetacean habitat studies
(Canadas et al., 2002; Davis et al., 2002; Gomez et al., 2008;
Azzellino et al., 2008, 2012; Thorne et al., 2012; Marini et al., 2014;
Bohrer do Amaral et al., 2015) the following environmental vari-
ables were selected: sea surface temperature (SST - degree Celsius),
Chlorophyll-a concentration (Chl-a - mg/m3), water depth (m),
slope (degree), distance to the coast (m) and aspect. Water depth
was mapped using LANDSAT TM satellite images acquired with
high resolution (30 m). Raster bathimetry data were obtained with
a resolution of 0.002 decimal degrees (250 ! 250 m approxi-
mately). This spatial resolution was maintained for the calculation
of the variables SST, Chl-a, slope and aspect. Monthly 4 km MODIS
SST and Chl-a data from NOAA (National Ocean and Atmospheric
Administration) satellite imagery were downloaded and clipped to
the study area usingMarine Geospatial Ecology Tools (Roberts et al.,
2010). The point data were interpolated using an inverse distance
weighted (IDW) technique using “Interpolation” function in Spatial
Analyst Tools in ArcGIS 9.3, and averaged to create predictor layers
for the models. Slope defined the bathymetric gradient along the
study area and was measured in degrees. A continuous raster sur-
face of seabed gradient was derived using “Slope” function in
Spatial Analyst Tools in ArcGIS 9.3. Aspect measures the hetero-
geneity of the downslope direction and was calculated by deriving

Fig. 1. Lampedusa island. The solid line delimited the study area and the dotted lines the boundaries of the MPA and the SIC. The white line delimited the northern and southern
sectors of the study area.

Table 1
Number of dolphin sightings and kilometers of effort between 2005 and 2009, as a function of months and geographical sectors of the study area. In parentheses is shown the
percentage contribution of effort for each sector (North and South) of the study area.

May Jun Jul Aug Sept October North South Total

2005 Sightings 10 11 14 10 6 4 10 45 55
Km 383.0 205.2 381.53 296.10 198.66 128.9 497.67 (31%) 1092.67 (69%) 1590.3

2006 Sightings 10 8 15 8 8 3 18 34 52
Km 251.4 397.11 594.90 357.97 298.41 246.0 924.89 (43%) 1220.89 (57%) 2145.8

2007 Sightings e 0 12 13 3 e 4 24 28
Km e 71.69 135.23 184.42 168.01 e 244.32 (43%) 315.03 (57%) 559.35

2008 Sightings e 14 14 20 9 e 12 45 57
Km e 180.61 283.66 287.50 277.19 e 358.19 (35%) 670.77 (65%) 1028.96

2009 Sightings e 11 23 10 7 e 11 40 51
Km e 128.62 373.75 192.44 150.04 e 358.86 (42%) 485.99 (58%) 844.85

Total Sightings 20 44 78 61 33 7 55 188 243
Km 634.4 983.20 1769.07 1318.43 1092.31 371.9 2383.93 (38%) 3785.35 (62%) 6169.28
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the maximum rate of change in value from each cell to its neigh-
bours, using “Aspect” function in Spatial Analyst Tools in ArcGIS 9.3.
Aspect was a categorical variable, with 8 classes, coded as follow: N
(1); NW (2); NE (3); S (4); SW (5); SE (6); W (7); E (8). Distance was
calculated for each cell centroid from shoreline shapefile using
“Near” function in Spatial Analysis Tools in ArcGis 9.3. Thus the
environmental predictors included in the analysis were 5 contin-
uous variables (SST, Chl-a, depth, slope, distance to the coast) and 1
categorical variable (aspect). Statistics of each environmental pre-
dictor as a function of years and months are shown in Table 2.

2.3. Data analysis

MaxEnt software (version 3.3.3 k) was used to elaborate prob-
abilistic predictions of T. truncatus spatial distribution at different
temporal scales. MaxEnt uses environmental data at locations of
species sightings in comparison with environmental variability in
the background data to describe the distribution of a species, thus
predicting the relative occurrence rate (ROR) as a function of the
environmental predictors at that location. The background data
were a large number of points randomly selected from within the
study region during the modelling procedure, and provided a
sample of available habitat of a species within a specific region
(Phillips et al., 2006). The probability of occurrence can be inter-
preted as an estimate of the probability of presence under a similar
level of sampling effort as that used to obtain the known occur-
rence data (Phillips and Dudìk, 2008). From the collection of bio-
logically plausible predictors, the removal of highly correlated
predictors using correlation analysis is recommended (Merow
et al., 2013). To test correlation between the six environmental
predictors, the Pearson's correlation coefficient was applied to each
pair of variables. Statistical significance was tested at the P < 0.05
level. None of the variables were highly correlated, thus all of them
were included in the models (Table 3). In order to evaluate monthly
and yearly change patterns in habitat suitability, models were
performed for the five years of sampling (2005e2009), for each
single year and for each single month, from May to October. The
winter months were not included in the analysis due to limited
sampling efforts. MaxEnt settings were chosen in relation to the
specific questions of the study and data limitations (Merow et al.,
2013): i) logistic output to easily understand where the model
predicts the occurrence of dolphins, and to use the maps as a tool
for planning conservation measures; ii) hinge features to improve
the performance of the models without increasing the complexity

(Phillips and Dudìk, 2008); iii) default regularization parameters;
iv) 10-fold cross-validation, a process that allows model results to
be based on ten randomly selected portions of the data and model
performance to be assessed by withheld portions of the data
(Phillips et al., 2006); v) the maximum number of background
points was 10,000 (over 25.988 available) as number of background
points greater than 10,000 does not improve the predictive ability
of the model (Phillips and Dudìk, 2008). The performance of each
MaxEnt model was assessed using the AUC (area under the receiver
operating characteristic curve) threshold-independent metric,
which assesses model discriminatory power by comparing model
sensitivity (i.e., true positives) against model 1-specificity (false
positives) from a set of test data (Phillips et al., 2006). The AUC
value provides a threshold-independent metric of overall accuracy,
and ranges between 0 and 1. According to the classification pro-
posed by Swets (1998) for the interpretation of AUC value, models
with values from 0.7 higher are considered those with good
discrimination ability (0.7e0.8: moderate discrimination; 0.8e0.9
good discrimination; 0.9e1: excellent discrimination). To illustrate
how much each variable contributed to the MaxEnt run, we ob-
tained alternative estimates of variable importance for our models
by conducting a Jackknife analysis. This technique was realized in
two stages: 1) considering only one variable at a time and gener-
ating the corresponding model, it was possible to evaluate the
contribution (gain) of each variable with respect to the whole
ensemble of variables; 2) excluding one variable at a time and
generating the corresponding model with the remaining variables,
it was possible to evaluate the effects of the lack of the selected
variable on the model based on the set of overall variables. To
evaluate dolphin habitat suitability based on model results, we
created maps from the logistic output for each monthly, yearly and
total averaged distribution predicted by MaxEnt. The likelihood of
dolphin occurrence was represented in five classes of equal size
(very low, low, moderate, high and very high) for amore immediate

Table 2
Descriptive statistic of the environmental predictors as a function of month and year.

Seasonal variables SST ("C) CHL-a (mg/m3)

Min Max Mean SD Min Max Mean SD

2005 24.816 25.156 25.024 0.060 0.074 0.091 0.083 0.004
2006 25.410 25.880 25.726 0.075 0.073 0.087 0.079 0.003
2007 25.664 26.016 25.834 0.089 0.072 0.084 0.078 0.002
2008 25.301 25.617 25.468 0.049 0.066 0.078 0.072 0.002
2009 25.796 26.110 25.950 0.074 0.070 0.087 0.076 0.003

May 19.232 19.985 19.508 0.105 0.118 0.139 0.128 0.004
Jun 22.059 22.709 22.463 0.125 0.094 0.108 0.101 0.002
Jul 25.856 26.148 26.005 0.063 0.066 0.083 0.073 0.004
Aug 26.785 27.049 26.925 0.055 0.062 0.071 0.065 0.001
Sept 26.183 26.462 26.338 0.057 0.068 0.087 0.077 0.004
Oct 23.972 24.332 24.133 0.076 0.070 0.102 0.083 0.007

Fix variables Depth (m) Slope

Min Max Mean SD Min Max Mean SD

#154.5 #0.1 #55.6 24.5 0.0 12.6 0.8 1.05

Table 3
Average test AUC and standard deviation (in parentheses).

Months AUC (SD) Years AUC (SD)

May 0.792 (0.201) 2005 0.829 (0.094)
Jun 0.756 (0.129) 2006 0.801 (0.100)
Jul 0.849 (0.035) 2007 0.861 (0.096)
Aug 0.908 (0.043) 2008 0.841 (0.076)
Sept 0.832 (0.080) 2009 0.863 (0.057)
Oct 0.965 (0.030) 2005e2009 0.847 (0.019)
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interpretation of the maps. For the localization of the SAC, the
recommendations for selection criteria for SAC (European
Commission, 2011) was followed. The boundaries of the SAC were
designed in order to include all the cells that had a value of likeli-
hood of dolphin occurrence equal to or higher than 0.2 in at least
one of the time periods analyzed.

3. Results

Despite the attempt to cover the area homogeneously, the
southern sector accounted for 62% of the total sampling effort
compared to 38% of the northern sector. This is mainly due to the
position of the harbour, in the southern part of the island, and to the
strongestwind from the northwest which reduced the possibility of
navigating more frequently in the northern sector of the island.
MaxEnt models obtained AUC values larger than 0.8 indicating that
they were accurate in the prediction of dolphin occurrence and
habitat suitability (Table 3), with only two partial exceptions (May
and June; AUC > 0.75). The most important contributing variable
(Tables 4 and 5, Fig. 3) to the models was the distance to the coast
throughout all study periods, with only one exception (August). The
highest logistic probability for finding dolphins was between 700
and 1370 m from the coast; later, the probability decreased rapidly
up to 0.5 at 4500 m, 0.2 at 8300 m, reaching approximately 0 going
over 11,000 m up to 23,000 m (Fig. 2a). While these extension
rangeswere constant year to year, they seemed to change at smaller
temporal scales (months): the dolphin occurrence probability at
shorter distances from the coast decreased from June to September
(Fig. 5). Slope, aspect and depth were relatively weak predictors
(Fig. 3). Apart from few exceptions (September, 2007 and 2008),
ROC showed that the logistic probability of finding dolphins was
larger at a depth between 20 and 60 m and rapidly decreased at
lower or higher depth (Fig. 2b). The probability of occurrence for
the whole period (2005e2009) increased with a slope higher than
4" (Fig. 2c), even though this patternwas not constant and changed
in different years and months. While SST was a weak predictor
(Tables 4 and 5; Fig. 3), overall Chl-a efficiently collected a large
quota of percentage contribution in explaining dolphin occurrence
above all during high primary productivity periods (Tables 4 and 5).

Within the study area (992 km2), the area where dolphin occur-
rence was higher than 0.2 was about 350 km2 (35.6%), throughout
the study period with small annual changes (Fig. 4). The areawhere
it was possible to find dolphins with the highest probability (from
to 0.6 to 1.0) was small, and ranged from about 40 to 70 km2 (on
average 58.2 km2). The area associated with the highest probability
was always smaller than 10 km2. The boundaries of the SAC were
designed to comprise all the cells with a likelihood of dolphin
occurrence >0.2 for a total area of 710 km2, corresponding to 71% of
the whole study area (Fig. 6) (see Table 6).

4. Discussion

4.1. Model considerations

There has been a great debate regarding the performance of
statistical-correlative SDMs in terms of model predictive power
(i.e., the so called model skill, the degree of correspondence be-
tween model predictions and field observations) and stationarity
(i.e., the ability of a model generated from data collected at one
place/time to predict processes at another place/time). Neverthe-
less, this class of SDMs is considered important in designing future
management strategies. We are aware that our modelling exercise
is indeed not lacking in limitations. Some common issues derive
from sample size, spatial scale and nature of environmental data-
sets, which are all capable of influencing the accuracy of the
MaxEnt algorithms (Elith et al., 2006). For instance, an insufficient
occurrence of sampling localities in the model building process and
biased sampling effort can reduce the model skill (Phillips et al.,
2006, 2009). To reduce the effect of such issues, in the present
study, the winter months were excluded from the analysis due to
the small number of sightings and the reduced sampling effort. The
non-homogeneous distribution of the sampling effort around the
island (less intense in the farther northern part) may increase the
risk of bias. To have a greater control over this sample selection bias
(Phillips et al., 2009), some authors have suggested gaining infor-
mation to discriminate among environmentally unsuitable and
under-sampled areas (Clements et al., 2012). Here, we did not apply
the methods suggested to reduce sample selection bias (Phillips

Table 4
Percent contribution and permutation importance of relative contributions of the environmental variables to the MaxEnt model on a yearly base. Permutation importance is
obtained trough random permutation of the values of that variable on training presence and background data.

Variable Percent contribution % Permutation importance

May Jun Jul Aug Sept Oct May Jun Jul Aug Sept Oct

Depht 0 0.4 8 2.7 0.3 0 0 0.5 20 3.9 1.4 0
Distance to coast 33.5 82.8 65.9 6.6 77.5 67.7 69.7 88.7 70.2 3.9 83 86.6
Slope 11.2 3.9 4.6 5.1 2.2 0.2 18 3.7 2.9 0.9 2.5 0.1
Aspect 16 7.3 4.6 2 12.2 9.7 5.4 1.9 2.9 1 9.8 3.8
Stt 7.2 3.5 0.4 6.2 7 20.2 3.1 3.8 0.2 6.1 1.9 8.1
Chl 32.2 2.1 16.5 77.4 0.8 2.1 3.8 1.3 4.9 84.2 1.4 1.5

Table 5
Percent contribution and permutation importance of relative contributions of the environmental variables to theMaxEnt model on amonthly base. Permutation importance is
obtained trough random permutation of the values of that variable on training presence and background data.

Variable Percent contribution % Permutation importance

2005 2006 2007 2008 2009 2005e09 2005 2006 2007 2008 2009 2005e09

Depht 10.3 1.5 1.2 4.8 0.5 5.9 22.1 1.9 6.4 10.9 1.1 8.6
Distance to coast 68.3 84.4 67.6 54.6 71.3 76.1 64.3 87.8 80.2 75.7 80.9 85.5
Slope 3.1 5.5 4.5 1.3 10.8 5.6 2.2 4.7 0.8 1.6 1.5 1.1
Aspect 14.2 4.6 11.8 1 4.3 1.5 7.3 3.1 7.4 1 3.1 0.3
Stt 1.2 1.5 14.5 1.6 13 8.3 3.3 1.1 5.1 0.3 13.1 3.9
Chl 2.9 2.5 0.5 36.7 0.1 2.6 0.8 1.9 0 10.6 0.3 0.3
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et al., 2009; Fourcade et al., 2014) for two reasons: i) a lower
probability of occurrence of animals in the northern part of the
island was evident in all the investigated periods, even those in
which the sampling effort in both sectors, North and South, were
similar; ii) a greater likelihood of occurrence of animals in the
southern part of the island was not considered as generating an

implicit modelling artefact, and the same result was found in many
other studies performed with different methods (Azzolin et al.,
2007; Pulcini et al., 2010). SDMs may be influenced by geograph-
ical bias in the sampling points used to train models (Costa et al.,
2009). In the case of dolphins, sightings associated with trawlers
or other fishing activities can generate geographically biased

Fig. 2. Logistic output (probability of presence) as a function of the environmental predictors for the entire period (2005e2009).

Fig. 3. Outputs of the Jackknife analysis for the entire period (2005e2009).
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distributional data with respect to that gained through a truly
random distribution. This may generate a less accurate prediction
of dolphin occurrence. However, here, we adopted a random
sampling design which was not specifically constrained by the
presence of trawlers or fishing nets. Finally, we were aware that
during the phase of the creation of predictor layers, the modelling
exercise required a process of averaging and interpolation of the
environmental data and that this may influence the actual spatial
and temporal variation in the environmental conditions. The

limited set of predictors chosen for this type of study certainly
cannot encapsulate all potential factors that could influence the
spatial distribution of dolphins (Pitchford et al., 2014). As a conse-
quence, we tried to soften this possible interference by proposing
an interpretation of our data in terms of the likelihood of occur-
rence within the range of the mean environmental conditions. In
our study, as an example, information about the local sedimentary
characteristics or human pressure, in terms of fishing and sea-
related tourism, may increase the accuracy by identifying

Fig. 4. Likelihood of occurrence of T. truncatus as a function of year.
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associational causes between dolphin occurrence and sites.

4.2. Dolphin habitat preference

The distribution of a species can be explained in terms of a
trade-off between benefits met in a certain habitat and costs
deriving from the exposure to risks. Dolphins, like all other animals,
increase their benefits by addressing behavioral strategies for
staying where the likelihood of prey detection may be higher and

the risk of exposure may be lower. Human activities may increase
risks as already highlighted in other studies (Allen and Read, 2000;
Davis et al., 2002; La Manna et al., 2013; Marini et al., 2014)
showing that dolphin habitat preferences tend to optimize the
compromise between hydrological and morphological factors
interacting with the disturbance effect of human presence.

In this study, MaxEnt offered a great opportunity to weigh the
contribution of morphological and oceanographic factors when
studying T. truncatus habitat preference within a geographic area

Fig. 5. Likelihood of occurrence of T. truncatus as a function of month.
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considered a biodiversity hot spot in the Southern Mediterranean
Sea (Goffredo and Dubinsky, 2013). Lampedusa dolphins were
tightly associated to the most coastal part of the island, which is
also themost congested one in terms of boat traffic and related boat
noise (La Manna et al., 2010, 2014). The factor first selected by our
Jackknife analysiswas the distance to the coast, which seems to be a
very good predictor for dolphin occurrence. The area with the
highest likelihood of dolphin occurrence was between 700 m and
1370m from the coastline, in those sites wherewater column depth
did not exceed 60 m. In Lampedusa, what seems more important
for T. truncatus is the shallowness of its feeding grounds, as they
often host complex and rich food webs such as those associated
with rocky reef and seagrass beds (Lloret et al., 2002). Dolphins
seem to spend as much time as possible close to those areas, as it
increases their likelihood of finding preferential (demersal) prey
(Demestre et al., 2000; Bearzi et al., 2008). This result partially
contrasts with other data reporting that this species may also
exploit deeper sea sites, between 100 m and 400 m (Canadas et al.,
2002; Azzellino et al., 2008, 2012; Marini et al., 2014). The reason
for this discrepancy should be further investigated, although site-
specific geo-morphological factors combined with the geograph-
ical segregation of Lampedusa from the rest of the continental shelf
waters may provide a plausible explanation.

The preference of T. truncatus for the shallower portion of the
continental shelf showed a monthly pattern. The reduced likeli-
hood of dolphin occurrence in area nearest to the coast during
summer, when the boat traffic usually reaches the highest level (La
Manna et al., 2010), could demonstrate that the presence of

dolphins is constrained also by disturbance factors such as boat
traffic and the consequent effect of displacement (La Manna et al.,
2013). Boat traffic is recognized as one of the major sources of
disturbance in marine ecosystems (Abdulla and Linden, 2008) and
the characteristics of disturbance (in terms of intensity, frequency
and duration, sensu Miller et al., 2011) deeply affect the amount of
time dolphins spend in a certain area (La Manna et al., 2013, 2014).
Nevertheless, failing to include specific data on boat traffic may be a
source of modelling bias that needs to be further clarified.

Slope and aspect, usually used to describe local factors such as
hydrodynamics and light irradiance affecting primary producers,
were poor predictors. This is consistent with other studies (Gomez
et al., 2008; Marini et al., 2014). In contrast, Chl-a, the most used
proxy for local primary production in open-sea waters and close to
coastal areas (e.g. Sar!a et al., 2011), was the second most important
predictor of likelihood of dolphin occurrence, especially in certain
periods. Chl-a is not able per se to drive dolphin distribution, but it
works as a good proxy for other bio-ecological factors (Moure et al.,
2012) involved in their feeding preference, such as the distribution
of zooplankton and indirectly of zooplankters fish. While no
extensive data exists to demonstrate broadness of the trophic
spectrum available to T. truncatus in the waters surrounding
Lampedusa, overall Mediterranean bottlenose dolphins seem to
optimize where they mainly rely on demersal prey (Bearzi et al.,
2008). Thus, even though there is an indirect link between pri-
mary biomass (as expressed by Chl-a) and dolphin occurrence
(mediated by at least two or three steps of their food web), satellite
Chl-a seems useful in seeking and identifying hot spots where
dolphins may concentrate their presence. This could be strategic in
Marine Spatial Planning actions when designing monitoring plans
in order to predict the distribution of marine mammals. The same
was not true for SST, which, in the present study, weakly predicted
the probability of dolphin occurrence with the exception of one of
the coldest months (October) and the hottest years (2007 and
2009). The weak correlation between SST and dolphin occurrence
should not be surprising, as marine mammals are homeotherms.
However, some stronger correlations (as in October and in 2007
and 2009) can sometimes emerge as SST is the most important
effector of trophic dynamics of oceanic marine food webs, which
are essentially based on ectotherms (from phytoplankton to fish).
Thus, MaxEnt was able to capture the effect of SST only in some
periods, when the link between dolphin occurrence and SST was
most likely stronger.

5. Conclusion

Our modelling effort indirectly increased our understanding of
how natural and human factors may interact in determining the
habitat preference of T. truncatus. This aspect is crucial (Ingram and

Fig. 6. Proposed SAC for T. truncatus. LVH ¼ likelihood of dolphin occurrence from low
to very high (0.2e1).

Table 6
Area (in km) associated with classes of probability of dolphin occurrence as a function of year and month.

Period Very high (%) High (%) Moderate (%) Low (%) Very low (%)

2005 9.81 1.0% 46.09 4.6% 111.97 11.3% 222.81 22.5% 601.71 60.6%
2006 3.62 0.4% 65.41 6.6% 148.34 14.9% 191.98 19.3% 583.04 58.8%
2007 5.84 0.6% 38.50 3.9% 63.51 6.4% 153.84 15.5% 730.70 73.6%
2008 3.93 0.4% 56.83 5.7% 129.08 13.0% 183.51 18.5% 619.04 62.4%
2009 6.22 0.6% 35.18 3.5% 71.34 7.2% 150.07 15.1% 729.58 73.5%
2005e2009 3.55 0.4% 54.62 5.5% 91.05 9.2% 203.73 20.5% 639.44 64.4%
May 2005e2006 11.00 1.1% 34.25 3.5% 83.63 8.4% 206.03 20.8% 657.48 66.3%
Jun 2005e2009 0.50 0.1% 85.62 8.6% 213.57 21.5% 220.32 22.2% 472.38 47.6%
Jul 2005e2009 2.71 0.3% 53.47 5.4% 103.27 10.4% 182.13 18.4% 650.81 65.6%
Ago 2005e2009 4.16 0.4% 30.14 3.0% 62.98 6.3% 66.11 6.7% 829.00 83.5%
Sept 2005e2009 3.93 0.4% 63.92 6.4% 111.92 11.3% 158.82 16.0% 653.80 65.9%
Oct 2005e2006 2.52 0.3% 20.50 2.1% 32.50 3.3% 72.40 7.3% 864.47 87.1%
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Rogan, 2002) to the planning and management of the conservation
of the species under the Environmental Directives worldwide.

Present results may be well suited in the context of Marine
Spatial Planning (MSP). MSP is rapidly gaining momentum
(Stamoulis and Delevaux, 2015) and represents a powerful tool for
detecting when and where to initiate and undertake human ac-
tivities at sea in order to ensure sustainability and economic effi-
ciency. MPAs and SACs can play an important role, as they are
arguably the most powerful tools available to date for containing
the ever-increasing over-exploitation of marine resources, the
degradation of marine habitats (Agardy et al., 2011), and for the
maintenance and restoration of key species populations. Never-
theless, MPAs/SACs may fail in their scope when the initial size and
design are not dynamically adapted to meet ecological principles
and when consequent management measures are not properly
planned (Mangano et al., 2015). In the waters around Lampedusa,
the boundaries of the MPA and the SCI were initially designed
(some decades ago) without calibrating their size and position in
the light of T. truncatus distributional range around the island. The
semi-quantitative only-presence information provided here by
MaxEnt seems sufficiently reliable in predicting the distribution of
T. truncatus around Lampedusa. Thus, our findings allow us to
suggest a SAC for bottlenose dolphins of about 710 km2 around
Lampedusa. SAC proposal was not only based on dolphin encounter
rate data (Azzolin et al., 2007), but exploited valuable information
based on the link between relative abundance and environmental
covariates. This well responds to the request of high quality spatial
data and analysis as first step in making the practice of MSP
possible (Collie et al., 2013).

Datasets such as those found in this study may help in the
accomplishment of the second MSP step which relies on the
assessment of human activities in the marine eco-space. Lamp-
edusa local population, like those living on many geographically
segregated islands worldwide, bases its local economy on both
fishing and tourism, with dolphin-watching often representing one
among the most important components of the annual economic
income. Thus, since the modern concept of sustainability is
grounded on the assumption that ecological, economic and social
needs (United Nations General Assembly, 1987) should all be
satisfied simultaneously, a proper management plan at these lati-
tudes should consider the SAC for dolphins in order to design and
periodically adjust (dynamically) the local exploitation level. This
would permit to reach a solution regarding two apparently con-
trasting needs - biodiversity protection and economic develop-
ment. Nevertheless, a coordination at the regional level among
many institutions belonging to cross-border countries is necessary
for increasing the efficiency of management measures. In the end,
an integrated action over larger spatial scales (a portion of the Basin
rather than only one island) represents the fundamental step for
the correct use of Marine Spatial Planning. In fact, tailoring MPAs
and SACs to local conditions may individually solve localized,
species-specific, or habitat-specific conservation problems, but the
total sum of MPAs/SACs at the regional level within the context of a
wider strategic marine plan is the only path to increasing the
effectiveness of the ecosystem-based management practices
(Agardy et al., 2011) at larger spatial scale. Thus this results should
be interpreted in the perspective of best practices, practices that,
once verified their applicability at local scale, can be exported on a
broader geographical scale.
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