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Dipartimento di Biologia Animale dell’Università, Via Archirafi, 18, Palermo 90123, Italy
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Abstract

Environmental effects of aquaculture loadings have often been reviewed descriptively, and thus
have not provided quantitative estimates of the overall response in the water column. Meta-analyt-
ical reviewing techniques allow the contextualisation of quantitative effects in the domain of current
literature. In the present paper, more than 50 peer-reviewed articles were analysed and about 425
study cases used to test whether worldwide cultivations have a differential effect on dissolved nutrient
levels. Meta-analysis feasibility depends on obtaining an estimate of the effect size from every study
and the most common measure of effect size (Hedges’ d) is the difference between means of controls
and impacts standardised by dividing by the pooled standard deviation. Across all study cases, irre-
spective of cultivation and organism type, the cumulative effect size was large and significant
(d > 0.8) for ammonium, nitrite and nitrate, medium (0.8 > d > 0.5) for dissolved phosphorus, and
not significant (d < 0.2) for silicates. Effects were mainly correlated with the degree of openness in
water bodies, and ammonium and the other nitrogen forms were the most highly informative
descriptors of effects in the area surrounding farms, even though weakness in statistical approach
was highlighted. The results partially contradict the common view that effects of aquaculture and
associated environmental patterns are well defined throughout the current literature.
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1. Introduction

Since aquaculture was first considered an important anthropic activity with potential
detrimental effects on the environment (Naylor et al., 1998), a number of descriptive
reviews on this issue have been published. Aquaculture facilities have effects on both
the water column (Modica et al., 2006) and on sediments (Kalantzi and Karakassis,
2006) along many different axes of variability. Numerous questions have therefore arisen
as to how, where and when aquaculture has had measurable effects on the environment. It
has often been noted (Gowen and Bradbury, 1987; Iwama, 1991; Enell, 1995; Iversen,
1995; Wu, 1995; Beveridge, 1996; Bardach, 1997; Carpenter et al., 1998; Naylor et al.,
2000; Black, 2001; Fernandes et al., 2001; Islam et al., 2004; Pillay, 2004; Islam, 2005) that
the type of cultivated organisms (e.g. fish, shrimps, bivalves), the locations of cultivation
(i.e. ecosystems and water types such as fresh, mixed [brackish] and marine waters), the
cultivated biomass, the number of species, the quality and quantity of supplied food or
management practices (i.e. intensive, semi-intensive, extensive) are the prime factors in
determining the extent of effects on the environment, in that they represent the direct cau-
sal factors of eutrophication risk. Many authors have pointed out that aquaculture is an
anthropogenic activity, which has only limited effects on the environment compared to
other forms of pollution (e.g. Islam and Tanaka, 2004). Others have proposed conceptual
nutrient mass balance models to extrapolate the level of nitrogen and phosphorus dis-
charged from a hypothetical culture system (e.g. Islam, 2005). Nevertheless, only rarely
has there been an attempt in the primary literature to estimate the how, where and when
of environmental effects of aquaculture. The present review, using meta-analytic tech-
niques, aims to provide a quantitative estimate of aquaculture effects using data amassed
from current peer-reviewed literature, and is directed at understanding whether dissolved
nutrients in the water column are generally affected by aquaculture facilities. Gurevitch
et al. (1992) pointed out that meta-analysis, as opposed to other review techniques, offers
major advantages for research synthesis in ecology. Indeed, meta-analysis is a quantitative
tool available to ecologists who wish to obtain general knowledge about the magnitude of
a certain effect, whether that effect is different among contrasting categories of studies and
how much variation is explained both within and among categories. The specific aims of
the present meta-analysis are to estimate: (1) the degree of heterogeneity of results
reported from aquaculture studies investigating the effects on dissolved nutrient levels;
(2) the cumulative effect of aquaculture loadings on nitrogen, phosphorus and silica across
the peer-reviewed literature; (3) the differential effects of aquaculture loadings on each
form of the dissolved nutrients; (4) which factors mainly affect the variability of cumula-
tive dissolved nutrient levels and lastly (5) whether a possible deviation from common nat-
ural patterns induced by aquaculture loadings is generally similar as a function of the
ecosystem and cultivated organism types.

2. Materials and methods

2.1. Literature search, meta-analysis criteria and data eligibility

Data on the effects of aquaculture loadings on the water column through dissolved
nutrients as descriptors were obtained from a literature search using mainly the Aquatic
Science and Fisheries Abstracts (ASFA) and some other databases, such as Bio-One or
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Zoological Records available on-line on the internet. The scope of this search ranged
between 1980 and the present, and when grey literature, internal reports or unpublished
data were not readily available on-line, I personally contacted a number of authors to
obtain their publications, though to no great degree (22%) of success. The search was ini-
tially carried out using prominent or substantial keywords such as ‘‘aquaculture and
impact”. This method revealed a very large number of publications (11,656 published
by January 2006) stemming from all possible sources, most of which were immediately dis-
carded, either because of their low accessibility to a large audience (internal institutional
reports or symposium proceedings and/or language barriers; some of these reports were
written only in French, Italian, Chinese, Japanese, Russian, etc.). Many of the documents
published prior to 1985 were ruled out due to the physical difficulty of obtaining these
papers from authors or libraries, despite the fact that 450 studies among those published
in peer-reviewed journals had been initially retained. Due to these hindrances, therefore, I
focused only on widespread and easily accessible sources, such as those published in
peer-reviewed journals after 1985. Whilst the potential loss of useful data found in grey
literature and internal sources is an important meta-analytic concern, it is hoped that con-
sidering only peer-reviewed articles ensured consistently high quality data, such that are
often not found in other (perhaps less established) sources. Although major journals tend
to publish only significant results, thereby generating a potential publication bias and dis-
torting the direction of a true effect (Hedges and Olkin, 1985), the peer-review process is
the best method to reduce the likelihood of potential quality biases in reviewing.

Most of the contemporary peer-reviewed articles, however, reported the words ‘‘aqua-
culture” and ‘‘impact” in contexts not relevant to the present meta-analysis. I thus
reduced the scope of the search, using keywords such as ‘‘aquaculture and impact and
nutrient”, ‘‘aquaculture and impact and ammonium”, ‘‘. . . and nitrite”, etc., which
resulted in a database of about 100–120 peer-reviewed articles, which were then checked
for against the required criteria for meta-analysis. Unlike descriptive reviews, meta-anal-
ysis requires the quantitative measure of variance to be stated by each study (Hedges
and Olkin, 1985). I therefore obtained the means for the control and treatment groups,
their standard deviations and their sample sizes (Hedges and Olkin, 1985) in order to
calculate meta-analytic statistics. In the present meta-analysis, control groups are repre-
sented by data collected from distinct areas identified by each author, where effects of
aquaculture facilities were not present. The treatment group is represented by data col-
lected from areas directly affected by farm loadings. Thus, the first screening of these
studies allowed me to include all papers reporting at least means, deviations and sample
sizes for both controls and farmed areas. In 30–40% of the studies it was not possible to
extrapolate deviations or sample sizes, and they were therefore excluded from this meta-
analysis.

2.2. Meta-analysis methodology

Meta-analysis feasibility (Hedges and Olkin, 1985; Cooper and Hedges, 1994; Rosem-
berg et al., 2000; Scheiner and Gurevitch, 2001) depends on obtaining an estimate of the
effect size (i.e. the magnitude of the effect of interest) from every study. The effect of
interest in the present paper was the differential effect exerted by each organism (shrimps
[SHR], fish [FISH], bivalves [BIV] and polyculture [POLY]) cultivated in different water
bodies (i.e. ecosystem; freshwater, mixed or marine conditions) on dissolved nutrients
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(NH4, NO2, NO3, PO4, SiO2). The most common measure of effect size is the difference
between means of the controls and farmed areas, standardised by dividing by the pooled
standard deviation (Cohen, 1969). This standardised mean difference, Hedges’ d (hereaf-
ter called simply d), is conventionally considered to be ‘large’ for values of 0.8 or higher
(i.e. the farmed area group mean is eight tenths of a standard deviation greater than that
of the control group), ‘medium’ for values of 0.5 and ‘small’ when d equals 0.2 (Cohen,
1969). The usual method is to provide the 95% confidence intervals (CI) for d as well.
When CI overlaps zero, there is no significant difference between controls and farmed
areas.

Another fundamental part of meta-analysis is to calculate the cumulative effect size rep-
resenting the overall magnitude of the effect present in all studies. When the calculated CI
of the cumulative effect size does not bracket zero, it is considered to be significantly dif-
ferent from zero (in the case of the present topic, for example, a significant CI would indi-
cate significant evidence that farm loadings would have a certain effect on dissolved
nutrients). The magnitude scale for the cumulative effect size is that proposed by Cohen
(1969). In addition, to calculate the degree of heterogeneity among case studies and to esti-
mate whether effect size d was homogenous among studies, I used the Q statistics (Qtot;
Hedges and Olkin, 1985).

The meta-analysis approach used here was similar to that reported in Gurevitch et al.
(1992) and Hedges and Olkin (1985). I first tested whether all studies shared a common
effect size, but having established that the hypothesis of equality among effect sizes was
rejected (i.e. studies were highly heterogeneous not differing only for the sampling errors),
the data was analysed in groups. In so doing, I estimated the singular overall effect of
aquaculture on each nutrient, the effect on each cultivated organism and, where the devi-
ation from a common natural pattern was different, the ecosystem factor was also tested.

Means and sample size data were taken from publication tables and figures. Data from
figure format were captured from plots using TechDig (rel. 2.0d) of which the error margin
was estimated at around 0.2–0.5%.

Once all the data had been obtained and entered into a MS Excel spreadsheet, the entire
dataset was standardised for the type of deviation (standard deviation or standard error)
and the units of measure (lM or mg l!1). Most of the papers reported means and standard
deviations, while others reported means and standard errors (as a function of their exper-
imental design). Some papers expressed the concentration in water of each nutrient in lM
and others in mg l!1. In the present meta-analysis, I transformed all deviations to standard
deviations using the calculator included in the MetaWin 2.0 software (Rosemberg et al.,
2000), while all concentrations were transformed into mg l!1. Since one of the major con-
cerns of a meta-analyst is the publication bias (i.e. the selective publication of articles
showing certain types of results in preference to those showing other types of results, sub-
stantially increasing the risk of distortion of the true direction of the effect) the d normal
quantiles were plotted versus the standardised mean effect (Rosemberg et al., 2000). The
normal quantile plot also allowed possible deviations of the studied cases to be examined
(Wang and Bushman, 1998). Furthermore, the Rosenthal index enabled the fail-safe num-
ber to be estimated, i.e. the number of non-significant, unpublished, low accessible or miss-
ing studies that would need to be added to a meta-analytic dataset in order to change the
results of the meta-analysis from significant to non-significant (Rosenthal, 1979; Rosem-
berg et al., 2000). All calculations were carried out using MS Excel and MetaWin 2.0
(Rosemberg et al., 2000).
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3. Results

3.1. Overview of literature

A total of 52 articles published between 1982 and 2005 in peer-reviewed journals (Table
1) were included in the present meta-analysis. This resulted in 427 independent cases
wherein all variables were considered together (NH4, NO2, NO3, PO4, SiO2). Although
the total number of studies represented substantially less than 10% of all accessible and
useful information published on this topic in the last two or three decades, it provided suf-
ficient information and gave a reliable estimate of the true effect of aquaculture loadings
on the water column. The Rosenthal Index was calculated to be in the order of 7053. This
high Rosenthal value confirmed that the observed results, even with some publication bias,
could be treated as a reliable estimate of the true effect. In addition, the possible risk of
publication bias or possible deviation of meta-analysis structure were investigated by
means of the normal quantile plot (Fig. 1). The plot indicated no deviations from meta-
analysis assumptions showing that meta-analytic results were not invalidated by issues
in the publication query or by general bias.

3.2. The overall effect size of aquaculture loadings on the nutrient pool

When all case studies were analysed together, aquaculture facilities appeared to have an
overall effect on dissolved nutrients. This was evident from the cumulative mean effect size
(d = 0.45) which, according to Cohen (1969), indicated a medium effect of aquaculture
loading on the dissolved nutrients in the water column. It was significantly different from
a zero effect because its confidence limits did not bracket zero (95% CI = 0.22–0.57). The
total heterogeneity (Qtot) among all studied cases was very high, in the order of 3563.0
(df = 426; p < 0.05) suggesting that variance among effect sizes was greater than expected
by sampling error. Thus, assuming this meta-analytic outcome, the studies were broken
into groups to test possible influences on the direction of the effect size raised by other fac-
tors such as the type of cultivated organisms or ecosystems.

3.3. General factors affecting the variability of the dissolved nutrients

Nutrient species were differentially influenced by aquaculture facilities across all studies
(Table 2). Ammonium appeared to be the nutrient most affected by loadings from aqua-
culture facilities irrespective of organisms and ecosystem; nitrites and nitrates and then
phosphorus were other compounds to be significantly influenced, while silicates did not
show any significant effect (Fig. 2a) as the d value turned out negative and confidence lim-
its bracketed zero.

The grand mean effect size was calculated as a function of each organism type irre-
spective of the nutrient type and ecosystem. The mean size effect was large, in the order
of 0.94 (95% CI = 0.80–1.1; p < 0.05), while the total heterogeneity was 816.59
(p < 0.05). Almost all organisms had an effect on the water column, and polycultures
in particular appeared to have a major effect on the dissolved nutrients, followed by
fish and shrimps. Bivalves did not show any significant influence on the dissolved nutri-
ent levels as the d value turned out negative and confidence limits bracketed zero
(Table 3; Fig. 2b).
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Table 1
The list of peer-reviewed papers published from 1982 to 2005 included in the present meta-analysis, reporting also
countries (n = 30) where experiments were carried out, areas, type of ecosystem (mixed, freshwater and marine)
and cultivated organism (SHR = shrimps; FISH = fish; BIV = bivalves; POLY = polyculture)

# Study Country Area Ecosystem Type Topography

1 Alongi et al. (1999) Vietnam Pacific Mixed SHR Pond
2 Alongi et al. (2003) Malaysia Pacific Mixed FISH Open field
3 Azim et al. (2003) Netherland Inland Freshwater FISH Controlled
4 Ball et al. (1997) Ireland Atlantic Marine BIV Open field
5 Bechara et al. (2005) Argentina Atlantic Freshwater FISH Controlled
6 Biao et al. (2004) China Pacific Marine BIV Pond
7 Boaventura et al. (1997) Portugal Atlantic Freshwater FISH Open field
8 Burford (1997) Australia Pacific Mixed SHR Pond
9 Burford et al. (2003a) Australia Pacific Mixed SHR Pond

10 Burford et al. (2003b) Belize Atlantic Marine FISH Pond
11 Chandra Das et al. (2005) India Indian Freshwater FISH Controlled
12 Chin and Ong (1997) Singapore Pacific Freshwater SHR Pond
13 Christensen et al. (2003) New Zealand Pacific Marine BIV Open field
14 Costanzo et al. (2004) Australia Pacific Mixed SHR Pond
15 Costa-Pierce (1998) California, USA Pacific Freshwater POLY Controlled
16 Cowan et al. (1999) Thailand Pacific Mixed SHR Pond
17 De Casabianca et al. (1997) France Mediterranean Marine BIV Open field
18 Figueredo and Giani (2005) Brasil Inland Freshwater FISH Controlled
19 Galope-Bacaltos et al. (1999) Phillippines Pacific Freshwater FISH Open field
20 Green et al. (2002) Egypt Mediterranean Freshwater FISH Controlled
21 Guerrero-Galvan et al. (1999) Mexico Pacific Mixed SHR Pond
22 Guo and Li (2003) China Inland Freshwater FISH Open field
23 Hopkins et al. (1995) South Carolina,

USA
Atlantic Mixed SHR Open field

24 Hussenot (2003) France Atlantic Marine FISH Open field
25 Islam et al. (2004) Bangladesh Indian Mixed SHR Pond
26 Jackson et al. (2004) Australia Pacific Mixed SHR Pond
27 Jones et al. (2001b) Australia Pacific Mixed SHR Pond
28 La Rosa et al. (2002) Italy Mediterranean Marine BIV Open field
29 Martin et al. (1998) New Caledonia Pacific Marine SHR Controlled
30 McKinnon et al. (2002) Australia Pacific Mixed FISH Open field
31 Merceron et al. (2002) France Atlantic Marine FISH Open field
32 Motzkin et al. (1982) Israel Mediterranean Marine FISH Pond
33 Neori et al. (2000) Israel Mediterranean Marine POLY Controlled
34 Nordvarg and Johansson

(2002)
Finland Atlantic Marine FISH Open field

35 Ogilvie et al. (2000) New Zealand Pacific Marine BIV Open field
36 Paez-Osuna et al. (1997) Mexico Pacific Mixed SHR Pond
37 Pietros and Rice (2003) Rhode Island,

USA
Atlantic Marine BIV Controlled

38 Pitta et al. (1999) Greece Mediterranean Marine FISH Open field
39 Pitta et al. (2005) Greece Mediterranean Marine FISH Open field
40 Ruiz et al. (2001) Spain Mediterranean Marine FISH Open field
41 Samocha et al. (2004) Texas, USA Atlantic Mixed SHR Pond
42 Soto and Norambuena (2004) Chile Pacific Marine FISH Open field
43 Sumagaysay-Chavoso et al.

(2004)
Philippines Pacific Mixed FISH Open field

44 Tang et al. (2002) China Inland Freshwater FISH Controlled
45 Tovar et al. (2000a) Spain Atlantic Marine FISH Open field

(continued on next page)
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The overall effect of organism type on nutrients appeared to be significant in each eco-
system analysed (Table 4; Fig. 2c). Indeed, the meta-analysis suggested that the effect was
higher in freshwater environments than in mixed waters and lowest in marine waters. All
these effects were significantly higher than zero.

Table 1 (continued)

# Study Country Area Ecosystem Type Topography

46 Tovar et al. (2000b) Spain Atlantic Marine FISH Open field
47 Trott and Alongi (2000) Australia Pacific Mixed SHR Pond
48 Wahab and Stirling (1991) Scotland, UK Inland Freshwater FISH Controlled
49 Wahab et al. (2003) Bangladesh Indian Freshwater POLY Controlled
50 Wu et al. (1994) Hong Kong, China Pacific Marine FISH Open field
51 Zambrano et al. (1999) Mexico Inland Freshwater FISH Controlled
52 Zimba et al. (2003) Mississipi, USA Inland Freshwater FISH Controlled

The total cultivated species were 45 among fish (n = 24), shrimps (n = 11), bivalves (n = 7) and algae or plants
(n = 3). The topological features of each study have been also reported (controlled = environment controlled-by-
researchers with variable volumes from a few litres [mesocosm] to some hundred or thousand of m3 [enclosure];
open field = open environment mostly in the sea or in estuaries uncontrollable by researchers; pond = earthen
basins usually used for shrimp cultivation).

Fig. 1. The normal quantile plot plotted using all studies (n = 427).

Table 2
Effect of aquaculture facilities on each dissolved nutrient across all studies, in all ecosystems and for each type of
organism

Nutrient df d+ 95% CI P

NH4 101 1.53 1.23–1.83 <0.05
NO2 69 0.85 0.49–1.20 <0.05
NO3 58 1.31 0.92–1.71 <0.05
PO4 172 0.68 0.45–091 <0.05
SiO2 27 !0.18 !0.80–0.41 >0.05
All 426 0.94 0.79–1.08 <0.05

NH4 = ammonium; NO2 = nitrite; NO3 = nitrate; PO4 = phosphorus; SiO2 = silicates ALL = all nutrient
cumulated together; df = degree of freedom; d+ = mean size effect; 95% CI = 95% confidence interval;
P = probability level.
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Fig. 2. General meta-analytical results with (a) the mean effect size of all cumulated aquaculture facilities across
all studies on each nutrient (NH4 = ammonium; NO2 = nitrite; NO3 = nitrate; PO4 = phosphorus; SiO2 = sil-
icates ALL = all nutrient cumulated together); (b) the mean effect size of each organism type on dissolved
nutrient levels across all studies and in all ecosystems cumulated together (SHR = shrimps; FISH = fish;
BIV = bivalves; POLY = polyculture; ALL = all organisms cumulated together); (c) the mean effect size of
aquaculture facilities in each ecosystem analysed irrespective of dissolved nutrient type and organism across all
studies and (d) the mean effect size of shrimp aquaculture only in mixed water on each nutrient
(NH4 = ammonium; NO2 = nitrite; NO3 = nitrate; PO4 = phosphorus; SiO2 = silicates).

Table 3
Effect of organism type on the sum of dissolved nutrients through all studies and in all ecosystems

Organism df d+ 95% CI P

SHR 132 0.71 0.46–0.96 <0.05
FISH 257 1.10 0.92–1.29 <0.05
BIV 22 !0.03 !0.69–0.62 >0.05
POLY 12 1.80 0.91–2.65 <0.05
ALL 426 0.94 0.80–1.10 <0.05

SHR = shrimps; FISH = fish; BIV = bivalves; POLY = polyculture; ALL = all organisms cumulated together;
df= degree of freedom; d+ = mean size effect; 95% CI = 95% confidence interval; P = probability level.
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From a differential point of view, the valid shrimp cases regarding only mixed waters
showed that they affected mainly ammonium and nitrite, while other nutrients were not
influenced (Fig. 2d). It was not possible to make a comparison between shrimp farming
in mixed waters and marine or freshwater conditions.

Fish appeared to have a major effect in fresh waters, where all nutrients significantly
responded to farm loadings. In marine waters only ammonium and nitrites appeared to
be significantly affected, while in mixed waters, few cases were available and these showed
no significant effect elicited by fish on the sum of the dissolved nutrients (Fig. 3). Valid
cases of bivalve cultivations could only be studied in marine waters regarding ammonium,
nitrates and phosphorus (Fig. 4). Bivalves appeared to have no effect among nutrient
levels. Polyculture appeared to have the biggest effect size among all cultivation types in

Table 4
Effect of aquaculture facilities in each ecosystem analysed irrespective of dissolved nutrient type and organism
across all studies

Ecosystem df d+ 95% CI P

Mixed waters 153 0.61 0.39–0.84 <0.05
Freshwater 116 2.04 1.78–2.30 <0.05
Marine waters 125 0.37 0.14–0.61 <0.05
All 426 0.93 0.76–1.11 <0.05

ALL = all nutrient cumulated together; df = degree of freedom; d+ = mean size effect; 95% CI = 95% confidence
interval; P = probability level.
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Fig. 3. The mean effect size of fish aquaculture in all ecosystems on each nutrient (NH4 = ammonium;
NO2 = nitrite; NO3 = nitrate; PO4 = phosphorus; SiO2 = silicates) (95% confidence limits were reported).
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Fig. 5. The mean effect size of polyculture in fresh waters on each nutrient (NH4 = ammonium; NO2 = nitrite;
NO3 = nitrate; PO4 = phosphorus; SiO2 = silicates) (95% confidence limits were reported).
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marine waters and, although only a few cases were available, it was possible to estimate the
effect on ammonium, which was very high (d = 6.84; 95% CI = 4.06–9.61; p < 0.05). In
contrast, in fresh waters, polyculture had an apparent effect on ammonium, nitrites and
phosphorus, but these effects were not significant (Fig. 5). Finally, a correlation between
the size effect on biomass expressed as total biomass (tonnes) and the number of species
cultivated was attempted. In both cases, there was no relationship (p > 0.05) with biomass
or the number of species.

4. Discussion

The ecological effects of aquaculture on water column quality have still not received suf-
ficient critical examination (sensu Islam, 2005). This view is supported by the high heter-
ogeneity of studies available in the current literature. High values of heterogeneity are not
common throughout the ecological literature (Cote et al., 2001) except for some rare cases
(Gurevitch et al., 1992). This seems to demonstrate, in contrast with other ecological top-
ics, that the present topic may be affected strongly by several sources of variability produc-
ing high levels of heterogeneity in studying the response of dissolved nutrients in the water
column to aquaculture loadings.

Features of cultivated organisms (fish, shrimps and molluscs) and their metabolic pro-
cesses, ecosystem type (mixed, marine and fresh water), typology of cultivation (ponds,
cages in open waters, land-based, etc.), influence from receiving aquatic ecosystems (e.g.
hydrodynamics of water bodies and water residence time), and management practices
(e.g. annual biomass productions, feed supply, etc.) have been invoked as major factors
affecting the area surrounding farms (Islam, 2005). These high and complex sources of var-
iability lead only to a very fragmented panorama, from which one can generalise only with
great difficulty about the phenomenon of environmental effects of aquaculture. Neverthe-
less, the results from the present meta-analysis quantitatively contextualise, in the domain
of the current literature, the effects of aquaculture loadings on the surrounding water col-
umn. The overall direction of the size effect is indubitably corroborated; i.e. farm loadings
stemming from different types of cultivated organisms and in different locations appear to
induce a significant deviation from common natural patterns (as measured by each
authors in their respective chosen controls) of almost all dissolved descriptors in a water
column. Although this result may no longer be an assumption in the current literature, it
could provide a synthesis of the direction of aquaculture effects, not least because some
authors do not use a common scientific methodology or direction in their research effort,
or in the way they report their data and results (sensu Riley and Edwards, 1998; Karak-
assis, 2001; Ling and Cotter, 2003). To some extent, the present meta-analysis provides
confirmation of this perspective, because not all factors usually cited among the main cau-
sal factors appeared to have a true effect across the analysed literature.

4.1. The cumulative effect

When examining the cumulative results, all nutrients commonly used to describe pos-
sible eutrophication risks induced by aquaculture appeared to be affected by loadings,
except for silicates. Ammonium was the nitrogen form that more often deviated under cul-
tivation conditions, followed by nitrates and nitrites and lastly by phosphorus. The differ-
ing chemical behaviour and the origin of each nutrient could explain these results (Valiela,
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1984; Hargreaves, 1998; Quian et al., 2001). For example, as ammonium is mainly pro-
duced by the excretion of organisms (both fish and shrimps) and in shallow waters (shal-
low basins, ponds, estuaries) from sediment-flux derived from the mineralisation of
organic matter (e.g. food), it could be expected that it would be the first nutrient greatly
affected by aquaculture loadings. More than 80% of nitrogen excretion by shrimps (Paez-
Osuna et al., 1997) and fish, however, is represented by ammonium (Wood, 1958; Tanaka
and Kadowaki, 1995). Phosphorus originating from the decomposition of organic matter
and metabolic activities has usually been invoked as the nutrient mainly affected after
ammonium (Beveridge, 1996) by aquaculture loading, which is an important limiting fac-
tor to primary productivity in most aquatic environments (Valiela, 1984). Nevertheless,
across the current literature the phosphorus pool appeared less affected with respect to
nitrogen forms. Silicates mostly of terrigenous-continental origin (Valiela, 1984) did not
seem to be affected by aquaculture loadings.

4.2. The effect of the type of organism and ecosystem

The major factors generating differences among studies in determining differences in
dissolved pool appeared to be (1) the type of cultivated organism and (2) the ecosystem
where they are cultivated, irrespective of management practices and site-specific features.

Accordingly, in most of the studied cases, types of organism depicted the same direction
of the effect on dissolved nutrients, although each organism affected specific nutrients dif-
ferently, depending on the ecosystem where they are cultivated and the intrinsic biology of
each organism (metabolic processes, excreta quantity, etc).

The size effect of fish and shrimps appeared to be significantly higher, comparable
among each other and effective in determining a nutrient-rich environment in farmed areas
regarding the common natural patterns as measured in controls. By contrast, bivalve case
studies, although reduced in number (n = 22), did not produce a significant effect. The dif-
ferences in metabolic processes and biological features among these cultivated organisms
combined with the type of management practices could explain these differences. Further-
more, dissolved waste release, for example, showed higher results in these experiments in
fish than in bivalves, while shrimps were in the middle (Quian et al., 2001). This observa-
tion supports the direction of size effect (see Fig. 2) because the pattern of size effect could
appear to correlate with the quantity of excreta release, which is a group-specific factor.
However, this pattern is also linked to the type of management practice. Fish are mostly
cultivated under intensive conditions and feed is provided by an external source; cultiva-
tion of shrimps is often carried out under semi-intensive conditions (Paez-Osuna et al.,
1998) and the quantum of feed provided is smaller than for fish. In contrast, bivalves, such
as suspensivores, collect their food directly from the environment without any other exter-
nal input (Hickman, 1992). Thus, the direction of the size effect can be further affected by
the quality or the quantity of feed supplied to each type of organism (Enell, 1995; Beve-
ridge, 1996; Islam, 2005) and moreover can be linked indirectly to the cultivated biomass.
However, the dependence between the total cultivated biomass and the number of species
was tested and there was no significant relationship, which is surprising, because in many
reviews these two factors are those most often invoked to explain differences in dissolved
nutrient levels among farmed areas and controls.

Polyculture seems to be a separate case, having been cited on many occasions as a
practice able to increase the environmental sustainability of aquaculture and economic
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incoming (Troell et al., 2003; Neori et al., 2004). The high magnitude of the measured size
effect shows that the combination of different organisms coming from different trophic lev-
els cultivated together did not minimise differences between controls and farmed areas
with respect to monoculture. Such a result is quite puzzling but is very likely strongly
divergent due to the low number of studies analysed from very different types of papers
(Costa-Pierce, 1998; Neori et al., 2000; Wahab et al., 2003) which resulted from the low
accessibility of other data meeting all the requirements of reliability to be analysed with
meta-analytic procedures. Thus, although reliable papers used in this meta-analysis were
very few and highly heterogeneous, I wanted to analyse them to emphasise the scarcity
of reliable information existing on this topic across the peer-reviewed literature.

Ecosystem type seems to be the other main causal factor determining differences among
studies. The effect of aquaculture appeared highly location-specific, linked to width of the
water body and consequently to the hydrodynamic regime, rather than to the cultivated
biomass or number of cultivated species or type of species. In contrast, the direction effect
seems, in general, inversely correlated to the size of the water body (sensu Fernandes et al.,
2001) and indirectly to hydrographic conditions (Sarà et al., 2006): the higher the degree of
enclosure of water bodies, the bigger the effect size (i.e. effects of cultivation in fresh waters
were greater than effects in mixed waters, and these in turn were greater than the effects in
marine waters). Consequently, it was possible to extrapolate that nutrient loadings could
be a function of degree of enclosure of water bodies, that indirectly determines both the
flushing rate levels and the intrinsic chemical features of waters (Pillay, 2004). In closed
lakes, allochthonous nutrient loadings coming from farms amass to the autochthonous
dissolved pool that in limited hydrodynamics (sensu Sarà, in press; Sarà et al., 2006)
can more easily induce a deviation of farmed areas from controls, thus altering the chem-
ical equilibrium of the water column. In closed fresh waters, throughout the literature
studied, the difference between controls and farmed areas was very high, and the highest
for the resulting effect size. In mixed ponds or estuaries, where there is a concomitance of
fresh- and marine waters, and where the circulation within ponds is often forced by gravity
or pumps, allochthonous nitrogen and phosphorus loadings are often forced out of basins,
which partially limits their accumulation. Therefore, the direction of the effect size suggests
a general significant difference between controls and farmed areas, although it was lower
than in fresh waters. In marine open waters, the intrinsic feature of openness would appear
to limit the accumulation of allochthonous nutrients, reducing differences between con-
trols and farmed areas and the overall size effect throughout the literature. To better inves-
tigate the link between the degree of openness of water bodies in the sea (an important
concern highlighted in many reviews; Enell, 1995) and the extent of effects, I attempted
to classify the structure of aquaculture areas in semi-closed, sheltered, open, etc. for each
study. The results obtained were highly subjective due to limited knowledge of each site,
conditions of which could not be ascertained and, because of this, the attempt was
abandoned.

4.3. Statistical issues

The present meta-analysis based on the quantitative estimates of variance among all
studies led me to exclude a high percentage of peer-reviewed papers not responding to
meta-analytic criteria ("40%). In addition, most of the papers reported the deviation ten-
dency as standard deviations and only rarely as standard errors for means. This suggests
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that the accuracy of measures is quite low, and that, due to the limited reporting of stan-
dard errors, there is an overall weakness in experimental design across the literature (Fer-
nandes et al., 2001; Ling and Cotter, 2003). The study of effects of aquaculture on the
surrounding environment seems to suffer from this deficiency, i.e. authors appeared rather
lax in designing their experiments. This is quite typical of ecological studies carried out in
large experimental fields (sensu Oksanen, 2001) and is a genuine cause for concern. In most
of these cases, however, it is simply not possible to plan experimental designs with the
same rigour as with those in small enclosures, aquaria, a laboratory or similar controlled
conditions (sensu Oksanen, 2001). The degree of replication in large field conditions (sensu
Hurlbert, 1984) is doubtlessly affected by several variables and factors that very often can
be controlled only with difficulty (sensu Oksanen, 2001). In my view, this is the cause of the
high variance between studies that is greater than the intrinsic sampling errors from each
study. Throughout the scientific literature on this subject, it is clear that the effort involved
in sampling has been huge; more often than not, however, it is not channelled into building
a good experimental design (Schmitt and Osemberg, 1996; sensu Underwood, 1997). The
resulting situation is that in most of the studies, it is hard to detect the true effect of aqua-
culture facilities on the surroundings (Schmitt and Osemberg, 1996), which enhances the
risk of statistical errors (sensu Hurlbert, 1984; Underwood, 1997).

4.4. Research priorities, new perspectives and trends

The results of the present meta-analysis, even when cautiously interpreted, raise many
more questions than they have answered. At the start of my data collection, it seemed
that the huge quantity of publications would lead to a clear view of aquaculture effects
on the environment. However, although a large amount of data had been published
about this topic, the difficulty in finding them, the overall lack of useful information
and the weakness in experimental designs all limit the conveying of such knowledge
to the audience. Consequently, although we can find several thousands of citations
through the WWW, the number of papers offering useful, accessible and substantially
prominent information is only small. This has serious implications for potential environ-
mental repercussions. More effort should be directed towards understanding the extent
to which, and in what way, this anthropogenic disturbance can affect water column qual-
ity. Some of the present findings, in particular, should be made priority issues in any
future research.

Some authors have suggested polyculture as a potential solution to some aspects of
eutrophication, because the contextual cultivation of species from different trophic levels
(e.g. algae and bivalves together with carnivorous fish) would reduce the impact that
would emerge from the cultivation of only one carnivorous species (Troell et al., 2003).
Although theoretically this may be a satisfactory assumption, there is no evidence in the
current literature, apart from a few (influential) in-yard and open field experiments, to sup-
port the notion that polyculture reduces environmental impacts. Thus, due to the scant
information on this topic, greater effort should be directed towards examining this
assumption that as yet is only theory.

Although bivalves are among the primary cultivated species in the world, involving
large coastal populations and often political concerns (Hickman, 1992), there is very lim-
ited information in the current literature about their potential impact on dissolved nutrient
levels. This is very unusual, as they have received much attention from researchers over the
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last three or four decades, of which physiological aspects and, in particular, excretion rates
have been the most investigated features (see for example Dame, 1996; or Wildish and
Kristmanson, 1997 as reviews).

Although the choice of descriptors of dissolved nutrients is widely consolidated, some
studies still pay attention to silicates. However, they appear to be poor descriptors of
behaviour of heterotrophic loadings in a water column. In contrast, nitrogen forms
appeared to be the more highly informative descriptors of eutrophication risks in a water
column, while in sensu stricto, the role of dissolved phosphorus in describing the risk of
eutrophication results was limited only to small water bodies, contradicting the commonly
held view that phosphorus is, in most cases, the best descriptor.

Lastly, the present meta-analysis was not aimed at investigating the consequential
effects of dissolved pool changes on suspended biological communities (phytoplankton,
free-living bacteria, etc.). Thus, since a deviation from a common natural pattern of dis-
solved nutrients does not necessarily imply a direct response of the suspended biota (sensu
Pitta et al., 1999; Sarà et al., 2006), the discovery of contextual reporting, within the same
article, of both chemical and biological data, would possibly reveal the true detrimental
effects of aquaculture loadings on the environment.
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Sarà, G., (in press). Hydrodynamics affects origin and quality of food availability for bivalves: an isotopic,
biochemical and transplant integrated study. Marine Ecology Progress Series.
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