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Abstract

Defining sustainability goals is a crucial but difficult task because it often involves

the quantification of multiple interrelated and sometimes conflicting components.

This complexity may be exacerbated by climate change, which will increase environ-

mental vulnerability in aquaculture and potentially compromise the ability to meet

the needs of a growing human population. Here, we developed an approach to

inform sustainable aquaculture by quantifying spatio-temporal shifts in critical trade-

offs between environmental costs and benefits using the time to reach the commer-

cial size as a possible proxy of economic implications of aquaculture under climate

change. Our results indicate that optimizing aquaculture practices by minimizing

impact (this study considers as impact a benthic carbon deposition ≥ 1 g

C m!2 day!1) will become increasingly difficult under climate change. Moreover, an

increasing temperature will produce a poleward shift in sustainability trade-offs.

These findings suggest that future sustainable management strategies and plans will

need to account for the effects of climate change across scales. Overall, our results

highlight the importance of integrating environmental factors in order to sustainably

manage critical natural resources under shifting climatic conditions.
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1 | INTRODUCTION

Sustainability is a complex, layered, and inherently multidisciplinary

concept that spans multiple fields including environmental science,

social policy, and economics, also known as the three dimensions of

sustainable development (ICSU & ISSC, 2015). The environment and

the services it provides represent the base layer upon which social

and economic policy relies. Sustainable development, which strives

to meet the needs of a growing human population while safeguard-

ing Earth’s stressed life-support systems (ICSU & ISSC, 2015), is

becoming increasingly important in an era of global change and

large-scale biodiversity decline (Barnosky et al., 2011, 2012;

Cardinale et al., 2012). Most national and international legislative

efforts have highlighted the critical role that sustainability plays in

ensuring the welfare of current and future generations.

The 2030 Agenda for Sustainable Development (ICSU & ISSC,

2015), the Sustainable Development Goals (SDGs and related tar-

gets, adopted in 2015), the Mediterranean Strategy for Sustainable

Development 2016–2025 (UNEP/MAP, 2016), and the Paris Agree-

ment of the Conference of the Parties (COP21) of the United

Nations Framework Convention on Climate Change have greatly

influenced and addressed the exploitation of natural resources at sea

(i.e., such as fishery and aquaculture) (Visbeck, 2018). Although

the importance of environmental sustainability has been widely
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recognized and supported by integrated frameworks (Costanza et al.,

1997), very few attempts have been made to objectively quantify

and operationally define the existing trade-offs between the three

sustainability components in the aquaculture sector (Tlusty & Thor-

sen, 2017). Operationally defining sustainability goals under current

conditions is difficult as it involves the quantification of multiple,

interrelated and often-conflicting components. The complexity of

this task is expected to be exacerbated by climate change and, in

particular, rising temperatures which will increase environmental vul-

nerability and, in applied fields such as aquaculture, will have impor-

tant social and economic repercussions that are likely to extend

beyond national borders. Hence, local managers and policy-makers

need comprehensive credible, salient, and legitimate baseline knowl-

edge in order to quantify the environmental trade-offs to be inte-

grated into social and economic scenarios for a sustainable

development in space and time. Such information would allow the

implementation of optimal ecosystem-based management strategies

and strengthen the science-policy nexus (i.e., the relationship

between environment-related science and policy FAO, 2016; Hickey,

Forest, Sandall, Lalor, Keenan, 2013).

Aquaculture has historically focused on maximizing productivity

and economic returns on very short timescales. Although such prac-

tices can yield positive outcomes in the short term, the net results in

the medium to long term are often negative from a social, environ-

mental and economic perspective. Overall, future aquaculture devel-

opment needs to adopt a more integrated approach that balances

social, economic and environmental objectives to ensure a sustain-

able harvest of natural resources over multiple time horizons (ICSU

& ISSC, 2015). Here, we developed an approach to quantify spatio-

temporal shifts of critical trade-offs between environmental costs

and benefits using the time to reach the commercial size as a possi-

ble proxy of commercial implications of aquaculture under climate

change. To forestall shifts will allow one to inform policy changes

and avoid the risk for a growing disparity of responses between

Mediterranean countries and societies (UNEP/MAP, 2016).

The described approach relies on predictive models based on

fundamental biological characteristics of species (i.e., Functional

Traits [FT], sensu Schoener, 1986; Sar!a, Rinaldi, & Montalto, 2014).

At scales relevant to national management (Economic Exclusive

Zones, EEZ, Supporting information Figures S1 and S2), the develop-

ment of FT-based approaches (Schoener, 1986) can be used to gen-

erate the kinds of species- and site-specific mechanistic predictions

of environmental costs and benefits needed to quantify trade-offs

and inform sustainable development objectives (Sar!a, Mangano,

Johnson, & Mazzola, 2018). Such a mechanistic approach is critical

for devising an optimal spatial allocation strategy that simultaneously

maximizes commercial benefits (production) and minimizes

environmental effects (pollution). Indeed, by quantifying how the

relationship between biomass productivity and environmental impact

(i.e., the amount of organic loading derived from aquaculture; LOAD)

of changes over space and time, our approach can be used to design

future management plans that are optimal across multiple scales. On

this basis, stakeholders could identify and implement proactive, site-

specific management strategies tailored to target species. Once such

relationship is spatially-contextualized and mapped, it represents, in

practice, the quantitative informational baseline that scientists, pol-

icy-makers, and stakeholders need to produce management strate-

gies and plans that will also adapt to the combined multiple

pressures of climate change (Kearney & Porter, 2009; Pacifici et al.,

2015; Payne et al., 2015; Sar!a, Porporato, Mangano, Mieszkowska,

2018; Shelton, 2014).

Overall, the proposed approach will document spatio-temporal

patterns of covariation between environmental cost and benefit

maximized changes under current and future climate conditions and

narrowing the science-policy communication gap (Hickey et al.,

2013). We chose the aquaculture sector as a model system to test

how climate change (IPCC AR5 scenarios; 2015 vs. 2030 vs. 2050)

will affect the sustainable management of a critical natural resource.

Mechanistic FT-based models are ideal in aquaculture and in most

intensive terrestrial cultures (Koenigstein, Mark, G€oßling-Reisemann,

Reuter, & Poertner, 2016) since the effects of species interactions

(e.g., competition for space and resource and predator-prey relation-

ships) can be controlled via active management. We applied such

mechanistic FT-based models on the Mediterranean seabass, Dicen-

trarchus labrax (Supporting information Figure S3). The Mediter-

ranean seabass is an ideal model as it is one of the most traded

species in the world and one of the fastest-growing cultivated fish in

the Mediterranean Sea (FAO, 2016). Additionally, the Mediterranean

seabass may represent the candidate target for Northern Europe

aquaculture, owing to expected climate-induced temperature

increases in the region in future; the species has an affinity toward

the future expected temperature in this area (EUMOFA, 2016).

2 | MATERIALS AND METHODS

A framework (Figure 1) comprising of six steps was built, exploiting

the power of the mechanistic-based models Dynamic Energy Budget

(the DEB; Kooijman, 2010) and FiCIM (Brigolin et al., 2014) as

described here below.

2.1 | STEP 1—The dynamic energy budget (DEB)
model

The DEB model (Supporting information Figure S3) involves a com-

plete theoretical assessment at the whole-organismal level, to link

habitat features, functional traits, and life history of any living organ-

ism (Kooijman, 2010). DEB was selected for this study as a suitable

model to provide a whole-organismal approach, as DEB enables one

to elucidate how biologically and ecologically relevant responses

depend on environmental conditions (Kearney, Simpson, Rauben-

heimer, & Helmuth, 2010; Sar!a et al., 2012). Central to the DEB the-

ory is the concept that food and body temperature (BT) are the

primary drivers of an individual’s metabolic machinery (Sar!a, Palmeri,

Montalto, Rinaldi, & Widdows, 2013). The amount of ingested

energy available for biological processes is regulated within the DEB

SAR!A ET AL. | 3655
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theory by the Holling’s functional responses (Holling, 1959). Once

food is ingested, the amount of energy that flows through the

organism depends at some extent on physiological rates. As all

physiological rates depend on body temperature, BT is an important

driver, in particular for ectotherms, such as fish and shellfish, as their

BT is close to that of their surroundings. The effect of temperature

on metabolism follows the Arrhenius relationship (Kooijman, 2010),

which allows one to quantify how metabolic rates change within the

range of tolerance in each species; such range implicitly sets the lim-

its of the fundamental thermal niche of a given species (Kearney &

Porter, 2009).

To provide reliable predictions, the Dicentrarchus labrax model

was implemented through a systematic review (Mangano, Sar!a, &

Corsolini, 2017) performed to deliver some preliminary parameters

needed to further calibrate the Dicentrarchus labrax DEB model.

Details about the model calibration and validation are given in the

Supporting information section Tables S1, S2, and S3; Figure S4.

The Arrhenius formulation includes a specie-specific parameter, i.e.,

the Arrhenius temperature (TA), which, in this study, was estimated

as the slope of the linear regression between the logarithm of fish

oxygen consumption rate and absolute temperature. The lower and

upper boundaries of the BT tolerance range were extrapolated from

the literature (Claireaux & Lagard!ere, 1999; Claireaux & Lefranc!ois,
2007; Dalla Via, Tappeiner, & Bitterlich, 1987; Person-Le Ruyet,

Mah#e, Le Bayon, & Le Delliou, 2004); these parameters are listed in

Supporting information Table S1. Once the DEB model was

validated, the outputs were used to map the productivity index

TIME (see Figure 1) and feed the FiCIM model, as described below.

Details about the model calibration and validation are provided in

the Supporting information Model validation section and Figure S4.

2.2 | STEP 2—FiCIM (Fish cage Integrated Model;
Brigolin et al., 2014)

Organic matter accumulation and associated negative effects on

benthic communities has been identified as a key negative interac-

tion of fish cages with the surrounding marine environment (Har-

grave, 2005). Here, we simulated this impact by coupling the DEB

model described in STEP 1 with the particle tracking and deposition

modules of the FiCIM (Brigolin et al., 2014). These modules allow

one to obtain 2D maps of elemental fluxes of organic Carbon [g

C m!2 day!1] at the water–sediment interface on the basis of the

amount and composition of organic matter particles released by a

fish farm as feces and uneaten feed (Supporting information Fig-

ure S5). The model requires the following as input: (a) time series of

the amount and elemental composition of uneaten feed and feces

released by fish farms; (b) time series of water currents (see STEP 3);

(c) bathymetry of the area in which a fish farm is located.

Fish cage Integrated Model produces output time series of

fluxes of organic C, N, and P deposited on the seabed surrounding

a fish farm. To provide a synthetic index, the average deposition

of organic C was computed, named LOAD hereafter, expressed as

F IGURE 1 Six-step framework based on mechanistic models (DEB and FiCIM) used to obtain mechanistic-based spatial explicit optimization
[Colour figure can be viewed at wileyonlinelibrary.com]
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g C m!2 day!1,, for each grow-out production phase, at each grid

point. Subsequently, based on Cromey, Black, Edwards, and Jack

(1998) and Hargrave, Holmer, and Newcombe (2008), an impact

threshold, i.e., 1 g C m!2 day!1 was set, above which a grid point

is classified as impacted (i.e., areas in which LOAD exceeds the

threshold).

The species-specific LOAD index takes into account the effects

of prolonged organic matter accumulation underneath a fish farm,

which depletes the concentration of dissolved oxygen in surface sed-

iment, leading to changes in macrofauna community structure (Cro-

mey, Nickell, & Black, 2002; Hargrave et al., 2008). LOAD was

determined on a grid of 5 9 5 m resolution by tracking 10,000 par-

ticles per day. The parameters used in the deposition module and

their references are reported in Supporting information Table S4.

The initial positions of fecal particles and uneaten feed pellets were

randomly chosen within, respectively, the volume at a fish cage and

its surface. The settling velocity of each particle was randomly

selected from a Gaussian distribution (parameters are reported in

Supporting information Table S4). The model was coded in Fortran

and run on SCSCF (www.dais.unive.it/scscf), a multiprocessor cluster

system owned by Ca’ Foscari University of Venice.

2.3 | STEP 3—Estimation of input data

In principle, all forcings needed to run the DEB seabass model and

FiCIM should be estimated for the whole study area on the basis of

site-specific data; however, in practice, this is not feasible, both

because of the lack of a comprehensive dataset and the computa-

tional effort required by the FiCIM model. Therefore, to be consis-

tent with the aim of the paper, we proceeded with the following: (a)

discretization of the study area, (b) estimation of DEB forcing func-

tion, and (c) estimation of FiCIM forcing function.

2.3.1 | Discretization of the study area

In order to identify the study area, a 10 km coastline buffer with

bathymetric data and excluded areas deeper than 200 meters was

clipped, which would lie outside the continental shelf. The resulting

study area extended along a buffer of 10 km across the continental

shelf of the Mediterranean and Black Sea (Supporting information

Figure S6); the total surface was approximately 262,395 km2. Bathy-

metric data were accessed from the General Bathymetric Chart of

the Ocean (GEBCO_2014, http://www.gebco.net/) at 30 s arc reso-

lution (~1 km).

2.3.2 | Estimation of the DEB forcing functions

As stated, DEB models require body temperature (BT) as input time

series. To apply the approach visualized in Figure 1 to the whole

study area, we took the Sea Surface Temperature (SST) as a proxy

of BT. Time series of SST data were estimated from the results of

the EURO-CORDEX initiative (Jacob et al., 2014; Coordinated Regio-

nal Climate Downscaling Experiment). This Regional Climate Model

is based on the IPCC Fifth Assessment Report (AR5) CMIP5 (Cou-

pled Model Intercomparison Project). Data were downloaded

(https://esgf-index1.ceda.ac.uk/projects/esgf-ceda/) concerning the

Representative Concentration Pathways, RCP 4.5, with a spatial res-

olution of 0.11° (~12.5 km). Next, three time series of daily SST for

the following years: 2012–2014, 2030–2032, and 2048–2050 were

extracted, hereafter labeled 2015, 2030, and 2050, respectively, and

rescaled the data at 1 km, the same spatial resolution of the bathy-

metry dataset (applying the nearest neighbor interpolation) (Kotlarski

et al., 2014).

The study area was partitioned into subregions characterized by

similar annual mean temperature for the three temperature scenar-

ios. In order to obtain these subregions, we divided the range of

average temperatures for each scenario into 0.5°C intervals and

aggregated each grid point of the spatial domain within the resulting

classes; each class then included all cells falling within “Similar Aver-

age Temperature Regions” (SATRs). Subsequently, we estimated an

average 3-year SST time series for each SATR to be used as input to

the DEB model. SST data in NetCDF format were transformed in

comma-separated values (CSV) format suitable for the DEB model

using software developed by NASA Goddard Institute for Space

Studies (Panoply; GISS, http://www.giss.nasa.gov/tools/panoply/). All

NetCDF files were handled using Climatic Data Operators (CDO)

software (1.6.4 version; Max-Planck Institut f€ur Meterologie). Daily

SST values of each SATR were used to feed the DEB model as a

proxy of individual BT to compute the spatial distributions of the

outputs of the DEB model (TIME, the feces released every hour by

an individual—EJE and the hourly amount of uneaten feed per indi-

vidual—UNF).

2.3.3 | Estimation of FiCIM forcing functions

Dynamic Energy Budget and FiCIM were run in sequence for every

SATR for each temperature scenario as follows: the first model pro-

duced the TIME index and the time series of EJE and UNF, which

were used in turn as input for the FiCIM model to estimate the

LOAD index.

Time series of the amount and elemental composition of uneaten

feed (UNF) and feces (EJE) released by a fish farm were used to esti-

mate daily emissions of a representative fish farm with 10 m high

cylindrical cages with a diameter of 15 m, assuming a stocking den-

sity of 30 individual m3, which leads to a biomass density at harvest

of approximately 15 kg/m3 (Halwart, Soto, & Arthur, 2007; Trujillo,

Piroddi, & Jacquet, 2012). Details on the coupling among individuals,

the ensemble of individuals stock in cages, and deposition modules

in FiCIM are reported in Brigolin et al. (2014). The particle tracking

module is computationally time-consuming and, therefore, it was not

possible to run as many simulations as are the cells in which the

study area was divided. Therefore, in order to find representative

values of the hydrodynamic circulation and bathymetry necessary for

the FiCIM models, we performed the following: (a) determined the

location of fish cages within the study area, (b) estimated the distri-

butions of the bathymetric and current data, and (c) computed the

SAR!A ET AL. | 3657
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25th, 75th, and 95th percentiles as representatives values of the

two distributions. Fish cage positions (Supporting information Fig-

ure S1) were determined by means of an extensive survey carried

out through Google Earth (last update June 2016) within the study

area following the method described by Trujillo et al. (2012).

Depths at cage sites were extracted from the GEBCO dataset

and the EMODnet bathymetry portal (http://www.emodnet-hyd

rography.eu/). Daily mean current velocity data were downloaded

from the European MyOcean project for every cage in the Mediter-

ranean Sea (Copernicus Marine Service - Ocean monitoring and fore-

casting service; http://www.myocean.eu/) produced by means of the

NEMO Ocean model version 3.4 (Madec, 2008) on a regular grid

with a spatial resolution of 1/16° (ca. 6–7 km) from the year 2014.

Eastward and northward current velocity (m/s) data were down-

loaded and extracted the subset of data concerning the grid cells

where the fish cages were kept. Synthetic current time series were

generated, assuming that the current module and main axis were

normally distributed around their 25th, 75th, and 95th percentiles.

Variances were set on the basis of NEMO data analysis.

The sensitivity of the environmental impact indicator, LOAD,

with respect to oceanographic conditions, was explored for the three

percentiles considered (25th, 75th, and 95th) by combining the three

representative depths (11.8 m, hereafter coded as !12; 19.0 and

43.6 m, hereafter coded as !44 m) with the three representative

current velocities (1.18, 4.94 and 12.47 cm/s), thus obtaining nine

oceanographic scenarios (see Supporting information Table S5).

2.4 | STEP 4—Mapping of model outputs

We ran the modeling system for each SATR using the forcing time

series estimated as described previously for the three temperature

scenarios (2015, 2030, and 2050) as input. Each simulation was run

until an individual reached the standard commercial size of 500 g

according to FAO statistics (http://www.fao.org/fishery/culturedspec

ies/Dicentrarchus_labrax/en). Finally, the two indices (TIME and

LOAD) for each time period were mapped (Supporting information

Figure S7).

2.5 | STEP 5—Optimization trade-off

2.5.1 | Modeling the trade-off

We used 1–3 degree polynomial regressions to quantify the trade-

off between the environmental costs (area in m2: LOAD) and bene-

fits (time to reach commercial size, days: TIME) impact of aquacul-

ture for each oceanographic scenario (current speeds of 1.18, 4.94,

and 12.47 cm/s) and year (2015, 2030, and 2050). We then used

information theory (corrected Akaike’s information criterion, AICC)

to select the model with the optimal polynomial degree. In all cases,

the second-degree polynomial model was selected to describe the

relationship between environmental and commercial impacts of

aquaculture as an inverted parabola. The ascending section of the

parabola represented a positive correlation between environmental

and commercial components (no trade-off), whereas the descending

section represented a negative correlation between environmental

and commercial components (trade-off). Values found in the ascend-

ing section were color-coded in red (no trade-off), whereas those

found in the descending section were color-coded in blue (trade-off)

(Supporting information Figure S8).

2.5.2 | Commercial-to-environmental impact
sensitivity analysis

An extensive sensitivity analysis was conducted to determine how

the trade-off changed under different assumptions regarding the rel-

ative valuation of commercial and environmental components for

each oceanographic scenario and year. To do so, we computed the

z-scores of the commercial (zC) and environmental (zE) components

by subtracting the mean from each value and dividing by the stan-

dard deviation. These dimensionless z-scores thus measure the “dis-

tance” between each component value and its mean in terms of the

number of standard deviations; hence, z-scores that are negative lie

below the mean and vice versa. We then computed the total impact

as ztotal = zC + a zE, where “a” represents a scalar used to alter the

relative weight of commercial and environmental components on

total impact. We further explored values ranging from 0 to 5 to

determine the robustness of our results to different weightings of

commercial and environmental components.

2.6 | STEP 6—Optimization spatial mapping

Optimization maps were produced joining the results obtained from

the analysis carried out in STEP 5 with each SATR, both no trade-off

and trade-off SATRs were represented. No trade-off indicates the

regions where a reduction in TIME should also reduce the environ-

mental LOAD and vice versa, while at the trade-off regions a reduc-

tion in TIME should increase the environmental LOAD and vice

versa. Supporting information Figure S9 shows the difference in

impacted areas between the 2015 and 2050 scenarios and between

the 2030 and the 2050 scenarios.

3 | RESULTS

Our findings show that increasing temperatures under climate

change will positively affect the time to reach commercial size

(TIME, in days) according to a latitudinal gradient (Figure 2).

In particular, most areas will have an increase in TIME between

2015 (days = 939) versus 2030 (days = 956), whereas between

2015 and 2050 (days = 937), the length of coastline where the

TIME will be shorter, will increase. The environmental impact of

aquaculture (LOAD) was quantified by measuring the amount of

total coastline area (m2) affected by produced ejections (EJE) and

uneaten feed (UNF) under multiple oceanographic conditions (inter-

mediate oceanographic conditions shown in Figure 3; other condi-

tions shown in Supporting information Table S5). The areas with

3658 | SAR!A ET AL.
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increasing LOAD will increase between 2015 and future scenarios

(Figure 3) with a heterogeneous spatial pattern (Supporting informa-

tion Figure S7).

In general, these maps show that the spatial distributions of com-

mercial and environmental changes will vary in complex ways over

time. To determine the relationship between commercial and envi-

ronmental changes as well as their covariation in space and time, we

regressed the environmental against the commercial components

using second-degree polynomials for each oceanographic scenario

and year. Our analyses among the three oceanographic scenarios

showed a unimodal relationship between environmental and com-

mercial components (inverted parabola), with environmental and

commercial components positively correlated in the ascending region

and negatively correlated in the descending region (Figure 4).

F IGURE 2 The time in days required to reach commercial size, from top to the bottom, respectively, across 2015, 2030, and 2050. Nine-
day classes are reported (differences in the first class are to highlight, respectively: 2015 = 587–600; 2030 = 593–600; 2050 = –; other
classes include 601–650, 651–700, 701–750, 751–800, 801–850, 851–900, 901–950, 951–975). Each histogram on the right side of the panel
shows the number of km2 within each class for each examined period [Colour figure can be viewed at wileyonlinelibrary.com]

SAR!A ET AL. | 3659
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In the ascending region, there was no trade-off between environ-

mental and commercial components, as reducing either would reduce

the overall climate change effect. Conversely, in the descending

region, there was a trade-off between environmental and commercial

components, as reducing one would not necessarily reduce the over-

all impact. There appears to be a strong latitudinal signal in the dis-

tribution of the trade-off between commercial and environmental

components across all oceanographic scenarios in 2015, with

F IGURE 3 The impacted area (m2; LOAD), from top to bottom, respectively, across 2015, 2030, and 2050. Five classes of impact are
reported, respectively, in 2015: 16,125–20,000; 20,001–21,000; 21,001–22,000; 22,001–23,000; 23,001–23,750; in 2030: 17,075–20,000;
20,001–21,000; 21,001–22,000; 22,001–23,000; 23,001–23,650; in 2050: 17,675–20,000; 20,001–21,000; 21,001–22,000; 22,001–23,000;
23,001–23,575. Each histogram on the right side of the panel shows the number of km2 within each impact class [Colour figure can be viewed
at wileyonlinelibrary.com]
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(a) (b) (c)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

F IGURE 4 Optimization curves (upper panel). The optimization between environmental impacted area (m2; LOAD) and time to reach
commercial size (days; TIME) with Similar Average Temperature Regions (SATRs) under three different scenarios of current velocity
(a = 1.18 cm/s, b = 4.94 cm/s, c = 12.47 cm/s). SATRs under a “no trade-off” condition are reported in red, SATRs in a “trade-off” condition
are in blue. Different symbols refer to SATRs of each of the three time periods: circle = 2015, square = 2030, diamond = 2050. The model fits
are coded based on year: solid line = 2014, dashed line = 2030, dotted line = 2050. Lower panel shows optimization trends among the three
scenarios of current velocity and years 2015, 2030, and 2050 [Colour figure can be viewed at wileyonlinelibrary.com]
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northern regions being dominated by a trade-off and southern

regions by a lack of trade-off (Figure 5). However, this latitudinal sig-

nal decayed over time across all oceanographic scenarios, as trade-

off and no trade-off regions become more interspersed in space (Fig-

ure 5). Additionally, although the first two oceanographic scenarios

indicate a southern expansion of the trade-off regions, the third

oceanographic scenario indicates a northern expansion of the no

trade-off regions (Figure 5).

Although quantifying the commercial and environmental compo-

nents of climate change separately across the Mediterranean Sea is

an important first step, stakeholders require an integrated metric in

order to facilitate spatial planning and management of aquaculture

activities. We devised a measure of total impact (ztotal) by summing

z-scores of the commercial (zC) and environmental (zE) components:

ztotal = zC + a zE (see Supporting information). Given the lack of

information regarding the relative importance or valuation of com-

mercial and environmental impacts, we then conducted an extensive

sensitivity analysis to determine how different weightings of these

two components would affect the total impact of climate change by

varying the value of “a,” a measure of commercial-to-environmental

impact, from 0 to 5. Our sensitivity analysis revealed that the total

impact of climate change on aquaculture is expected to increase

over time across all oceanographic scenarios (Figure 4). Indeed,

across all three oceanographic scenarios, the total impact increased

over time for all commercial-to-environmental ratios. By 2050, only

regions characterized by very low values of commercial component

or very low commercial-to-environmental impact ratios would be

characterized by low total impacts. Most of the regions, however,

were characterized by intermediate to high total impact, depending

on the commercial-to-environmental ratio (Figure 4). Hence, climate

change will make the practice of aquaculture challenging by increas-

ing both the frequency of trade-offs between commercial and envi-

ronmental components across the Mediterranean and Black Sea and

the total impact under most valuation scenarios (Figures 4 and 5;

Supporting information Figures S8 and S9).

Overall, our results demonstrated that adopting an integrated

framework that involve both environmental costs and benefits is

necessary to anticipate vulnerabilities, reduce the risk of mismanage-

ment and ensure the sustainability of human activities at sea under

future climatic projections (Cochrane, De Young, Soto, & Bahri,

2009). Present results also suggest that optimizing aquaculture prac-

tices by minimizing total impact will become increasingly difficult

under climate change for most oceanographic scenarios (Supporting

information Table S5). Although we believe that the approach

adopted and summarized in Figure 1 is sound, it is important to

acknowledge that our findings should be interpreted with caution, as

both the computational burden and the availability of site-specific

data have set some limitations to its implementation in the study

area.

The index LOAD is computationally much more expensive than

TIME, as it requires the integration via Montecarlo simulation of the

trajectories of 7 9 109 particles in a 2D domain, which took

F IGURE 5 Optimization maps of the Mediterranean and Black Sea across three scenarios of current velocity (scenario 1: 1.18 cm/s;
scenario 2: 4.94 cm/s; scenario 3: 12.47 cm/s) and years 2015, 2030, and 2050. Blue and red bars refer to the percentage of km2 respectively
under “trade-off” or “no trade-off” conditions [Colour figure can be viewed at wileyonlinelibrary.com]
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approximately 126 hr on the available computational resource.

Therefore, it would not be easy to run FiCIM at each grid point in

order to assess a site-specific impact. Furthermore, such an approach

requires site-specific hydrodynamic circulation data, although data

from operational oceanography could have served the purpose for

2015 scenarios, projecting currents for the 2030 and 2050 would

have been highly speculative. For this reason, we explored nine

oceanographic scenarios, which are representative of the present

current and depth distributions of fish farms. The results of our

investigation (see also the Supporting information section) showed

that both bathymetry and average current speed play a significant

role in determining the actual impact. Furthermore, our findings also

show (see Figure 4) that, in most SATRs, impact decreases as TIME

increases, such that wherever an increase in temperature will

shorten the grow-out phase, one can expect an increase in the mod-

erately impacted benthic area. To this regard, we would like to point

out that this area was defined on the basis of a threshold suggested

by the literature, i.e., 1 g C m!1 day!1 (see also the Supporting

information section), in keeping with a precautionary principle. In

general, in the presence of similar local bathymetry, the higher the

current speed, the larger the areas affected by moderate organic

enrichment, although the cumulative value of organic material

deposited per unit surface will decrease. On the other hand, at sites

characterized by low hydrodynamic dispersion this area would

shrink, but the deposition of organic matter in surface could reach

much higher values, inducing a shift toward anaerobic degradation

pathways. Therefore, proper site selection, based on site-specific

data, will become even more relevant in the future. In the present

study, we did not consider the effect of an increasing temperature

on the degradation of the organic matter in surface sediment, which

could further increase the impact on sediment biogeochemistry and,

in particular, on the oxygen sediment demand. Therefore, the organic

carbon flux, which was taken as an indicator of moderate impact,

may have to be revised and likely lowered.

4 | DISCUSSION

This study demonstrated how climate change could cause detrimen-

tal effects on sustainability when TIME and LOAD are integrated as

trade-off into the environmental component of sustainability. Here,

the use of TIME or LOAD as sole indicators could lead to counter-

productive management decisions and yield net negative results (Fig-

ures 2 and 3) (e.g., Sea-Level-Rise in wetland systems; Kirwan &

Megonigal, 2013). Consistent with previous work (Poloczanska et al.,

2013; Rutterford et al., 2015), our analysis showed that increasing

temperatures due to climate change would produce a mean pole-

ward shift in the environmental trade-offs. Additionally, the integra-

tion of these two indices (TIME and LOAD) of aquaculture

components (environmental cost and benefits) and downscaling to

local conditions (e.g., current velocity) revealed strong differences in

the spatial distribution of the trade-offs over time, with spatial vari-

ability increasing over time from 2015 to 2050. Since the

Mediterranean and Black Sea Exclusive Economic Zones (EEZs) will

experience distinct trade-offs in space and time (Supporting informa-

tion Figures S8 and S9), management strategies must be local and

adaptive in order to minimize total impact (FAO, 2016). Such spa-

tially explicit and multipronged information is critical to develop, pro-

mote and encourage for cooperation between knowledge producers

(scientists) and knowledge users (policy-makers) representing a solid

knowledge baseline in order to tailor future effective local sustain-

able management measures in aquaculture-dependent countries.

To this regard, the approach here proposed could be used in an

adaptive management framework, with innovation in cage manage-

ment aimed at lowering its environmental impact and improving its

performances can be easily taken into account by changing model

parameters, with respect to the estimates used in the present appli-

cation. For example, as regard feed performance and feeding man-

agement (e.g., lower FCR and differences in feed elemental

composition) can be accounted for by adjusting the parameters

reported in Supporting information Table S3, while higher buoyancy

by decreasing the settling velocity of feed particles, parameter wfo in

Supporting information Table S4.

Therefore, present approach can provide a sound environmental

baseline for constructing integrated models which allows one to

explore socioeconomic future scenarios of (a) the industry develop-

ment, (b) the markets’ prices adaptive replies to the climate change,

and (c) the growing seafood proteins demands. This will allow to

build proactive models for a sustainable aquaculture (Chavanne

et al., 2016; Sar!a, Mangano et al., 2018).

Thus, policy and management measures must be addressed with

spatial and temporal scales matching the values and issues of con-

cern as suggested for other human activities (Mu~noz, Farrell, Heath,

& Neff, 2015; Paterson, Kumar, Taylor, & Lima, 2015); however, they

are only rarely applied (Creighton, Hobday, Lockwood, & Pecl, 2016;

Lu, Nakicenovic, Visbeck, & Stevance, 2015).

Although our analysis focused on a single species, this mechanis-

tic approach can easily be extended to other aquaculture species, as

it exploits the power of species-specific biological traits (sensu Cour-

champ et al., 2015). Extending our framework to other species

would help generate predictions about the distribution of

multispecies trade-offs in space and time as well as identify winners

versus losers in the face of climate change. The generation of freely

available and updated multispecies trade-off maps will represent an

useful tool to help researchers track progress in plugging knowledge

gaps and drive decision-makers, stakeholders and public opinion in

developing adaptation and mitigation solutions at biologically rele-

vant spatio-temporal scales. The seabass is thought to be the best

candidate for Northern Europe aquaculture although there are no

biological-trait databases to date to corroborate it; this remains more

a working rather than data-driven hypothesis.

Aquaculture is expected to become potentially crucial in meeting

the world’s seafood demand since catches of most wild commercial

fisheries are at or beyond their maximum sustainable yield (FAO,

2016, ICSU & ISSC, 2015) with consequent alteration of seabed integ-

rity (Mangano, Bottari et al., 2017). However, our analysis shows that
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climate change may fundamentally limit the ability of aquaculture to

satisfy the future seafood needs of a growing human population.
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