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a b s t r a c t

Clearance rates, respiration rates and food absorption efficiencies of the commercially interesting sub-
tidal bivalve Modiolus barbatus were measured at different temperatures under laboratory conditions
and scope for growth calculated. Clearance rates were highest at temperatures from 20 !C to 28 !C,
whereas respiration rate was maximal at 9 !C and minimal at 26 !C. Highest mean values of absorbed
energy occurred at 20 !C and 26 !C. Scope for growth trend had negative values at 9 !C, 15 !C and 28 !C
and positive values at temperatures 20 !C and 26 !C. The profitable thermal window for M. barbatus to
have energy sufficient for growth and reproduction corresponded to <5 months per year. Seawater
temperature increases will potentially impact the eco-physiological responses of subtidal M. barbatus
causing life history traits to change with important repercussions for subtidal biodiversity in the
Mediterranean.

! 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Temperature is a main factor that have influence on animals
physiological responses (Gillooly et al., 2001; Kearneyet al., in press;
Sarà et al., in press) and is, therefore, one of the most important
factors determining the fundamental niche of a species (Chase and
Leibold, 2003; Schoener, 1986). Most marine organisms, including
bivalves, are ectotherms and many aspects of their energy budgets
like, for instance, the lifetime amount of energy invested and/or the
proportion of consumed energy allocated to growth are particularly
sensitive to external temperature changes (Kooijman, 2010). While
we recognize the potentially key roles of successful fertilization,
embryonic development and larval recruitment in determining the
distribution of marine organisms, the ultimate amount of energy
available to build gonads and abundant gametes in organisms with
“indeterminate growth“ (sensu Charnov, 1993) may represent the
proximate insurance to form stable populations that guarantee
a species’ persistence over time (sensu Kearney et al., in press; Sarà
et al., in press).

Many studies on the effects of temperature on energy budgets
are concerned with intertidal organisms (e.g. Helmuth, 2009;
Helmuth et al., 2010; Kearney et al., in press; Sarà et al., 2008, in
press; Wilbur and Hilbish, 1989) as they represent a reliable model
to: (i),investigate adaptations to highly fluctuating environmental
variance (sensu Burrows et al., 2009; Davenport and Davenport,
2005; Davenport et al., 2005) and (ii), forecast the distribution
and abundance of intertidal biodiversity in the context of climate
change (Helmuth et al., 2010). Deeper marine conditions are usually
considered more stable than intertidal ones (Southward, 1958).
Hence, subtidal bivalves assume the same body temperatures of
the waters they live in and should oscillate less sharply than in
the intertidal, primarily as a function of water mass seasonality
(Margalef, 1985). Thus, the stability of subtidal conditions should
lead to a longer life-expectancy and an adaptive consequence of this
will be a reduced plasticity in eco-physiological responses to envi-
ronmental changes (Somero, 2010). It is expected, as a consequence,
that small fluctuations in the environmentally variable water
column (e.g., temperature, salinity, food availability) may have large
impacts on ecological performance. Although several studies have
analyzed the energy budgets of subtidal bivalves (e.g. Navarro and
Thompson, 1996; Sarà and Pusceddu, 2008; Sukhotin et al., 2003;
Wong and Cheung, 2003), there is limited information available
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for certain commercially important species, including Modiolus
barbatus.

Modiolus barbatus generally occurs from depths of a few meters
to several dozens of meters in the western Mediterranean and the
Adriatic Sea and represents an important ecosystem engineer
(sensu Jones et al., 1994) in marine coastal habitats. Together with
another bivalve, Arca noae, M. barbatus serves as an attachment
substratum for conspecifics (Hrs-Brenko,1980) and several subtidal
phyto- and zoo-biofoulers (Peharda, pers. obs.). Natural pop-
ulations are harvested and it is also considered to be a potential
aquaculture candidate (Peharda et al., 2007). Despite its impor-
tance, no information is available on the energy budget of M. bar-
batus apart from some indirect metabolic data obtained on
responses along the higher side (from 24 !C to 30 !C) of a thermal
tolerance curve (Anestis et al., 2008).

Here, we tested if different temperatures set the thermal limits of
energetic functioning by M. barbatus. In particular, we measured,
under mesocosm conditions, the effects of temperature over a range
from 9 !C to 28 !C on: (i), clearance rate as an expression of food
intake; (ii) oxygen consumption rates as an expression of metabolic
requirements to lastlydepict (iii), scope forgrowthasanexpressionof
energy available for growth and reproduction. Such data are crucial
for themanagementofnaturalpopulationsof commerciallyexploited
bivalves, the initiation and sustainability of bivalve aquaculture and
are potentially useful as predictive indicators of changes in Mediter-
ranean subtidal biodiversity caused by temperature increases.

2. Material and methods

2.1. Sample collection and experimental set-up

Individuals of Modiolus barbatus were collected in November
2009 fromMali Ston Bay (Croatia; 42!5102900Nand17!4104400E) using
SCUBA at depths of between 2 and 4m andwere brushed to remove
epibionts. At this location, seawater temperature generally varies
from 9 !C in JanuaryeFebruary to 25 !C in JulyeAugust (Mladineo
et al., 2007). Collected individuals were acclimated in the sea at
the Institute of Oceanography and Fisheries in Split for twoweeks at
an ambient seawater temperature of 17 !C. After acclimation, indi-
viduals were transported to the Laboratory of Experimental Ecology
and Behaviour (Palermo, Italy), where they were further acclimated
for another two weeks at the original ambient temperature to
reduce possible stress deriving from transportation. They were
divided randomly into 5 groups of 20 individuals of shell length
5.4 # 0.5 cm. Each group of M. barbatus was maintained under the
same salinity (38 psu), and at one of five different experimental
temperatures (9 !C, 15 !C, 20 !C, 26 !C, 28 !C) maintained by means
of isothermal aquaria. This acclimation period, for each temperature
prior to experimentation, was for seven days as based on earlier
studies with Mytilus edulis and Brachidontes pharaonis; indeed, if
there is to be significant physiological adaptation to temperature it
should occur rapidly and largely within the first seven days (Sarà
et al., 2008; Widdows and Bayne, 1971). The bivalves were fed
daily with a monoalgal culture of Isochrysis galbana
(25,000 cells ml$1) and aquaria water was aerated continuously.
Before the start of experiments at each temperature, animals were
standardisingly fasted for 24h (Widdows and Staff, 2006). Clearance
rate, respiration rate and food absorption efficiency were measured
for each group at each temperature according to procedures repor-
ted uponbyWiddows and Staff (2006) and later successfully usedby
Sarà et al. (2008). To measure the physiological responses of M.
barbatus, eight individuals were used from each temperature group.
Clearance rate was measured in a closed system by placing one
individual each in a beaker containing 1 L of filtered thermo-regu-
lated seawater. To do this, beakers were positioned on heated

stirring base plates, also used to maintain temperatures at constant
values and to keep thewater mixed and oxygenated throughout the
experimental sessions. After a period of 20 min, as the bivalves
started to filter, algal cells (Isochrysis galbana) were added to each
beaker at an initial concentration of 25,000 cells ml$1. We used
Isochrysis galbana as it is the microalga of choice in most other
similar experiments, as evidenced by the ample literature on this
topic (e.g., Flye-Sainte-Marie, 2006; Pouvreau et al., 2006; Sarà et al.,
2008; Van Haren and Kooijman, 1993; Widdows and Staff, 2006).

Twenty ml aliquots were sampled from every beaker at 30 min
intervals over a period of 2 h. The decline in Isochrysis galbana cell
concentration was monitored using a Coulter Counter (Beckman
Coulter! Model Z2). Two control beakers, without M. barbatus,
showed no significant decline in cell concentration over the entire
experimental period. Clearance rate was calculated using the
following equation: CR (l h$1) ¼ 1 L (loge C1 $ loge C2)/time interval
(h): where C1 and C2 were the cell concentrations at the beginning
and end of each time increment (i.e., every 30 min). Clearance rates
were used to calculate ingestion rates, i.e., the amount of ingested
food per hour (IR, mg food l h$1) (IR ¼ CR & mg Algae l$1). Respi-
ration rate was determined by placing another eight individuals of
M. barbatus in glass respirometers (2 L) containing air-saturated pre-
filtered (0.45 mm; GF/F Whatman) seawater, agitated by a magnetic
stirrer bar. These individuals were different from those used for
clearance rate measurements in order to meet the assumption of
independence (sensu Underwood, 1997). The respirometer was
sealed and the decline in oxygen concentrationmeasured for at least
40e60 min by means of a Stratkelvin electrode (Model 282). Food
absorption efficiency (AE) was measured according to Conover
(1966) by comparing the proportion of organic matter in the algal
cells and faeces identified as dark brown strings in contrast to the
lighter-coloured pseudofaeces, which were not collected. Algal food
and faecal pellets were collected on GF/CWhatman filters (washed,
ashed andpre-weighed). Thefilterswere dried at 90 !C andweighed
before ashing in a furnace at 450 !C for 4 h and weighed again with
a Mettler balance (accuracy: 1 mg). Faeces were collected from the
acclimation beaker after the timing of respiration measurements.
FoodAbsorption Efficiency (AE)¼ (F$ E)/[(1$ E) * F]where F¼ ash-
free dry weight: dry weight ratio of food, and E ¼ ash-free dry
weight: dry weight ratio of the faeces. After physiological
measurements, the tissues of M. barbatus were removed from their
shells and dried at 80 !C to obtain shell and tissue dry weights. The
individual clearance rates (L h$1) and oxygen consumption rates
(micromoles O2 h$1) were converted to mass specific rates for
a ‘standardM. barbatus’ of 1g dry weight using the standard weight
exponent (b ¼ 0.67; Widdows and Staff, 2006). In order to calculate
the energy budget and scope for growth (SFG), each physiological
rate was then converted into energy equivalents (J h$1 g$1).
Specifically, the Maximal Consumed/Ingested Energy (C, J g$1 h$1)
was obtained by converting IR values into energy equivalents using
the coefficient 18.5 (J mg POM; Brown, 1991; Whyte, 1987); the
Energy Absorbed (AR, J g$1 h$1) was obtained by multiplying the
Ingested Energy (C) by the Food Absorption Efficiency (AE), while
the Energy Respired (RR, J g$1 h$1) was obtained from consumed
oxygen as expressed in micromoles O2 (h$1) multiplied by 0.456
where the heat equivalent of oxygen uptake was 0.456 J mmol$1 O2
according toGnaiger (1983). Scope forGrowth (SFG) represented the
difference between the energy absorbed (AR) and the energy loss via
respiration (RR).

2.2. Statistical analyse

An analysis of variance (ANOVA; Underwood, 1997) was carried
out to test the effect of temperature (5 levels, fixed) on physiological
variables respiration and scope for growth and for these variables
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the heterogeneity of variances was tested using Cochran’s C test
prior to the analysis of variance, and a Student-Newman-Keuls
(SNK) test allowed comparison of the appropriatemeans. Clearance
and absorption rates were tested them by using the KruskaleWallis
one-way analysis of variance. A posteriori pairwise tests were
performed within the PERANOVA test (Anderson, 2001) with ln
(y þ 1) transformation, Euclidean distance and 9999 permutations
(Sweeting et al., 2009).

3. Results

Significant differences in physiological rates were observed for
Modiolus barbatus kept at different temperatures (Tables 1 and 2).
Clearance rates of M. barbatus individuals acclimated to a temper-
ature of 20 !C and over were higher (from about 0.17 l h$1 g$1 to
over 0.23 l h$1 g$1) than those of conspecifics maintained at lower
temperatures (9 and 15 !C), which had values< 0.1 l h$1 g$1 (Fig.1).
Clearance rate was determined to be stable between 9 !C and 15 !C
(p > 0.05; Fig. 1) and also between 20 !C, 26 !C and 28 !C (p > 0.05;
Fig. 1). Values recorded at temperatures >20 !C differed signifi-
cantly from those recorded at lower ones. Respiration rate (Fig. 2)
was highest at 9 !C (20.89 mmol h$1 g$1) and lowest at 26 !C
(9.83 mmol h$1 g$1). Significant difference (Fig. 2; p > 0.05) in this
parameter was observed only between individuals kept at 26 !C
and those kept at other temperatures. The highest mean values of
absorbed energy were reached at 20 !C and 26 !C (about
2.5e3.0 J h$1 g$1; Fig. 3). In contrast,M. barbatus individuals kept at
9 !C, 15 !C and 28 !C absorbed significantly less energy (about
0.5e1.5 J h$1 g$1; Fig. 3). Absorption efficiency was lowest at 28 !C
(0.41) while at other temperatures it ranged from 0.69 to 0.81
(Fig. 4). The scope for growth of M. barbatus had a significantly
lower values at 9 !C, 15 !C and 28 !C (p < 0.05) than values at 20 !C
and 26 !C (Fig. 5).

4. Discussion

The amount of energy available for ectotherms generally varies
as a function of environmental variance and, in particular, with the
temperature that is able to consistently affect the magnitude of
allocation to growth and reproduction (Brown et al., 2004). Eco-
physiological information arising from the present experiment
focussing on the role of temperature on the energy budget of
Modiolus barbatus, integrates well with previous information on
growth (Peharda et al., 2007) and reproduction (Mladineo et al.,
2007) of this species and metabolic data obtained by Anestis
et al. (2008). This further supports the view that temperature
represents an important driver able to influence the energy budget,
growth and reproduction allocation in M. barbatus. In addition to
direct effects on the metabolic rate of bivalves, temperature also
influences food availability, which, in turn, has effects on gonadal
and somatic development (Gosling, 2003).

According to previous growth experiments conducted on M.
barbatus by Peharda et al. (2007), which included an analysis of
seasonal growth ofmarked individuals inMali Ston Bay, this species

grows fastest during the warmest part of the year (from May to
August) when seawater temperatures in the bay have an average
range from 20 !C to 25 !C (Mladineo et al., 2007). In contrast, during
other periods of the year, when seawater temperatures are lower
(w15 !C with a minimum of 9.9 !C; from November to May;
Mladineo et al., 2007), growth rates ofM. barbatuswere significantly
lower (Peharda et al., 2007). A similar seasonal growth pattern is
also seen in the Aegean Sea (Marsin Bay, Turkey; Lok et al., 2006). In
the latter case, a slight temporal shift coincided with the different
pattern of temperatures typically observed in that part of the
Mediterranean Sea. That is, the highestmonthly specific growth rate
ofM. barbatuswas from June to September, while growth rateswere
significantly reduced during other times of the year (Lok et al.,
2006). In both locations, however, this species seems to attain
a maximum growth rate when the water temperature is between
20 !C and 26 !C. That rangewould also coincide with the maximum
potential reproductive output (Mladineo et al., 2007) and the lowest
mortality rate (Anestis et al., 2008) reported upon for this species.
Mladineo et al. (2007) obtained a significantly positive correlation
between gonad index and temperature in Mali Ston Bay, with the
maximum occurrence of spawning events being recorded during
the warmest months of the year. Conversely, Anestis et al. (2008)
showed an increase in mortality with temperature according to
the following scheme: no mortality occurred in individuals accli-
mated to 24 !C, whereas ∼3% died at 26 !C, 10% at 28 !C, and 20% at
30 !C after a 30-day experiment. It is interesting to note that
spawning periodicity coincided with maximal shell growth rates,
indicating that this species has enough energy available to conduct
both activities simultaneously.

Clearance rate measured in the present paper reached
a maximum at 20 !C and did not drop significantly at 28 !C, sug-
gesting a food energy intake dependence on temperature. Below

Table 2
ANOVA testing the effect of temperature on M. barbatus respiration rate (RR,
mmol h$1 g$1 ¼ standardized respiration rate) and Scope for Growth (SFG,
J h$1 g$1 ¼ scope for growth) [* ¼ P ' 0.05; ** ¼ P ' 0.01; *** ¼ P ' 0.001; ns ¼ no
significant difference (p > 0.05)].

Source RR SFG

df MS F P MS F P

Temperature (TEMP) 4 15.51 3.43 * 20.55 9.64 ***

Residuals 35 4.52 2.14
Cochran’s test 39 ns ns

Table 1
PERANOVA testing the effect of temperature on M. barbatus clearance (CR,
l h$1 g$1 ¼ standardized clearance rate) and absorption rates (ABS,
J h$1 g$1 ¼ absorbed energy) [* ¼ P ' 0.05; ** ¼ P ' 0.01; *** ¼ P ' 0.001; ns ¼ no
significant difference (p > 0.05)].

Source CR ABS

df MS Pseudo-F P MS Pseudo-F P

Temperature (TEMP) 4 3.86E-02 5.1 ** 1.03 6.04 **

Residuals 35 7.61E-03 0.17 Fig. 1. Effect of temperature on the clearance rate (l h$1 g$1) of Modiolus barbatus.
Values are mean # SEM, N ¼ 8.
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these threshold values andpresumably beyond28 !C (unfortunately
we do not have data for temperatures higher than 28 !C), food
acquisition should decline to almost complete cessation (only some
ml h$1 g$1) between 15 !C and 9 !C. This suggests that for several
months of the year, food intake is minimal. A dependence of clear-
ance rate on temperature has been previously described for many
other species including Ostrea edulis (Buxton et al., 1981), Ruditapes
decussatus (Sobral andWiddows,1997), Pinctadamargaritifera and P.
maxima (Yukihira et al., 2000), Spisula subtruncata (Rueda and
Smaal, 2004) and Brachiodontes pharaonis (Sarà et al., 2008). Clear-
ance rates recorded for M. barbatus in this study were remarkably
lower. For instance, clearance rate of R. decussatus fed with a culture
of Phaeodactylum tricornutum was 7.33 l h$1 g$1 at 20 !C,
6.17 l h$1 g$1 at 27 !C and 4.66 l h$1 g$1 at 32 !C (Sobral and
Widdows, 1997). Similarly, Mytilus edulis kept at 9 !C had a clear-
ance rate of 3.02 l h$1 g$1 (Widdows and Johnson, 1988) while the
Lessepsian bivalve Brachidontes pharaonis kept at 37 psu and fed
with Isochrysis galbana had one of 0.75 l h$1 g$1 at 11 !C and
>5.0 l h$1 g$1 at 15 !C and 20 !C (Sarà et al., 2008). The clearance
ratesof tropical pearl oysters, P.margaritifera and P.maxima, fedwith
same the species of phytoplankton also varied with respect to

experimental temperatures - fromw5e7.5 l h$1 for individuals kept
at 19 !C tow11e13 l h$1 for those kept at 28 !C (Yukihira et al., 2000).

Differences in CR can occur not only between species but
between conspecifics from different habitats. This was confirmed
by the great differences in clearance rates detected betweenMytilus
galloprovincialis collected from the Atlantic coast of Spain and from
theMediterranean coast of France, and both fed with I. galbana. The
clearance rate of Atlantic M. galloprovincialis of 53 mm shell length
was 17.5 l h$1 g$1 (Maire et al., 2007) whereas the clearance rate of
Mediterranean conspecifics were 2.02, 2.93 and 2.61 l h$1 g$1,
respectively, for individuals of 61.6 mm, 73.0 mm and 88.9 mm
shell length (Perez Camacho et al., 2000; data standardized
according to Widdows and Staff, 2006).

Although M. barbatus CR values were significantly lower from
those described above, we must consider that body size and
age could significantly affect pumping rate. For example, M. edulis
pumping rate decreases in individuals older than six years (Sukhotin
et al., 2003). Hence, the reason for the relatively low filtration rate
recorded forM. barbatusmight be ascribed to the fact that the shell
lengths of the individuals used in this experiment hadmatching ages
of >8 years (Peharda et al., 2007).

Moreover, previous literature data deal with faster-growing and
shorter-lived species thanM. barbatus (Peharda et al., 2007), which
would explain the obtained higher clearance rate values.

Fig. 3. Effect of temperature on the absorbed energy (J h$1 g$1) of Modiolus barbatus.
Values are mean # SEM, N ¼ 8.

Fig. 4. Effect of temperature on the absorption efficiency of Modiolus barbatus.Fig. 2. Effect of temperature on the standardized respiration rate (mmol h$1 g$1) of
Modiolus barbatus. Values are mean # SEM, N ¼ 8.

Fig. 5. Effect of temperature on scope for growth (J h$1 g$1) of Modiolus barbatus.
Values are mean # SEM, N ¼ 8.
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Differences in filtration rate between fast-growing and slower-
growing oysters (Saccostrea glomerata) were commented upon by
Bayne (2004) who showed that faster-growing individuals had
higher filtration rates. Hence, if fast growth is the result of higher
feeding rates and reduced metabolic expenditure (Bayne, 2004),
slow growth of M. barbatus could be a result of low CR values and
higher RR.

Indeed, a wider ability to modulate clearance rates may be an
adaptive strategy in some species having a short life-expectancy
such as those living in highly variable habitats, for example, most
intertidal and shallow-water species. Such organisms should seize
an immediate advantage from every profitable environmental
situation allowing them to acquire energy to be allocated to growth
and reproduction (Krebs and Davies, 1993). In contrast,M. barbatus
showed a low rate of food acquisition per unit time and weight
which would equate more reasonably with a species living under
more constant conditions both of temperature and food availability
as typically occurs in subtidal Mediterranean habitats. This
hypothesis is supported by a study of Charles and Newell (1997)
who reported that ribbed mussel, Geukensia demmissa, individ-
uals held under subtidal conditions showed lower feeding rates
than intertidal conspecific. In addition, intertidal Geukensia demissa
acquired energy more efficiently from food than subtidal conspe-
cifics (Kreeger et al., 1990).

The lower amount of absorbed energy in M. barbatus with
respect to, for instance,Mytilus edulis (Widdows and Johnson,1988)
would further seem to confirm its subtidal nature. Anestis et al.
(2008) analyzed metabolic and molecular stress responses of
M. barbatus to increasing seawater temperatures. According to their
results, M. barbatus should reach optimal metabolic and molecular
responses at temperatures of w24 !C, while higher temperatures
would probably induce a detrimental response. This coincides with
our scope for growth results showing that large adults of this
species had a positive amount of energy over the thermal range
between 20 !C and 26 !C, peaking at 26 !C. In contrast, Mladineo
et al. (2007) observed that the active development of gametes in
M. barbatus from the same region (Mali Ston Bay) started in March,
when temperatures are usually <20 !C and when scope for growth
should be negative according to herein presented results. Such an
apparent contradiction deserves investigation.

Similarly, negative SFG values were also recorded for M. edulis
during periods of increased gamete development. Such individuals
were collected from areas with a lower temperature range (from
9 !C to 17 !C) than those reported upon herein, and showed
negative SFG values of $0.76 and $0.40 J h$1 in March (w9 !C) and
October (w14 !C), respectively. A positive SFG value was recorded
in June (1.23 J h$1) during the spawning period when temperature
was w13 !C. There are no data, however, on SFG at the highest
temperatures in this region and it is thus not possible to identify
a profitable thermal window for M. eduils (Hawkins et al., 1985).
SFG ofM. edulis fromNorway had a positive value at 9 !Cwhich is in
sharp contrast to M. barbatus which had a negative SFG value at
that temperature (Widdows and Johnson, 1988). Such results are
not surprising if we consider that M. barbatus occurs in warm,
temperate, waters and M. edulis is a boreal species: both are best
adapted to the conditions of their geographic ranges. Bivalves are,
however, able to make some metabolic compensations to maintain
their biological functions at relatively constant values, although
under conditions of year-round negative SFG they cannot survive in
certain areas. This was confirmed by SFG comparison of M. gallo-
provincialis from two areas: one with a naturally high abundance of
individuals and another into which individuals were translocated
for experimental purposes but where no natural population exis-
ted. SFG was negative during summer and winter (temperatures
were w16 and w11 !C, respectively) in the area with low

concentrations of organic matter possibly explaining why a natural
population does not exist there. In the area with a higher concen-
tration of organic matter and high M. galloprovincialis abundance,
SGF values were>80 J g$1 for both seasons (Gardner, 2000). A short
period of the year with positive SFG values was recorded for the
sub-Arctic mussel Modiolus modiolus although smaller individuals
had a longer period of the year with positive SFG values. Larger
individuals had negative SFG values during the major part of year
with positive values recorded only in spring when the temperature
was around 0 !C (Navarro and Thompson, 1996). Despite this,
M. modiolus is abundant in cold seas, leading to the conclusion that
the species gains energy requirement for maintenance over a short
frame. Only Anestis et al. (2008) have performed some physiolog-
ical tests on M. barbatus but, unfortunately, these were conducted
over a temperature range of between 20 !C and 28e30 !C, so that
we cannot draw an overlapping curve between their and our results
obtained from a wider range of experimental temperatures
(9!e28 !C). However, if we correlate our and their results obtained
over the temperature range from 20 !C to 28 !C, a similar trend is
obtained and which approximates the centre of the experimentally
derived thermal curve peaking at 26 !C.

Anestis et al. (2008) evidenced a metabolic depression and
a shift from aerobic to anaerobic metabolism at the lower and
finer observation scales of cellular and molecular. Such results are
not coincident with our respiration data probably because respi-
ration rates depict a metabolic response at a different level of
organization (i.e., organism). Respiration rates at the extremes of
the lower region of the M. barbatus experimental thermal curve
were higher than those obtained for Mytilus edulis
(10.1 mm h$1 g$1; Widdows and Johnson, 1988) and Brachidontes
pharaonis (w1.5 mm h$1 g$1; Sarà et al., 2008). The significant
difference in respiration rate was obtained between 26 !C (the
minimum) and all other temperatures. M. barbatus exhibited
a higher respiration rate during acclimation at the lowest
temperature (9 !C) and which, therefore, seems to be an adaptive
mechanism. This finding is in agreement with the activities of key
intermediate metabolic enzymes in the congeneric, Modiolus
modiolus (Lesser and Kruse, 2004). That is, the higher respiration
rate could be due to mitochondrial compensation, as discussed by
other investigators (Lurman et al., 2010; Sommer and Pörtner,
2002). However, as has also been shown, summer-collected
Modiolus modiolus exhibited higher respiration rates than
conspecifics collected during winter (Lesser and Kruse, 2004).

In conclusion, although the present experiment has limitations
in terms of the M. barbatus size classes it investigated, as well as
other factors that can have a strong influence on energy gain and
expenditure (e.g. food availability, seasonal physiological variation),
it provides a valuable insight into the energy budget of a commer-
cially important bivalve species. Although at present only natural
populations are harvested, M. barbatus is considered a potential
species for introduction into bivalve aquaculture (Peharda et al.,
2007) and data on its energy budget and its, in turn, dependence
on temperature, could be crucial for selecting potential aquaculture
sites and optimal culture depths. The most profitable thermal
window for large adult individuals of M. barbatus seems to be
∼4e6 !C. During the period over which such temperatures occur,
individuals should have energy sufficient for growth and repro-
duction for ∼5e6 months of the year.

Thus, in the situation of temperature increases in the near future
due to climate change (IPCC, 2007), and a slight shift of temperature
extremes towards the lower and higher side of curve are antici-
pated scenario, we expect that such a scenario would restrict
slightly optimal performance of M. barbatus, pushing it closer to its
eco-physiological limits. This shift could impact Modiolus fitness as
the temporal scheme of its life history strategy would significantly

D. Ezgeta-Bali!c et al. / Marine Environmental Research 71 (2011) 79e85 83



deviate from the common natural pattern with the expectation of
important repercussions on marine biodiversity.
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