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monoclonal antibodies, small molecule 
inhibitors, peptides, and antibodies 
conjugated to chemotherapy agents. 
Indeed, several clinical trials are 
already underway, looking at targeting 
Eph receptors in diseases such as 
ovarian cancer, non-small cell lung 
cancer and melanoma. However, more 
work is needed to understand the 
complexities of signalling redundancy 
and bidirectional ephrin–Eph signalling, 
to enable optimal therapeutic targeting 
of Eph receptors.
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Reduction in seawater pH due to rising 
levels of anthropogenic carbon dioxide 
(CO2) in the world’s oceans is a major 
force set to shape the future of marine 
ecosystems and the ecological services 
they provide [1,2]. In particular, ocean 
acidifi cation is predicted to have a 
detrimental effect on the physiology 
of calcifying organisms [3]. Yet, the 
indirect effects of ocean acidifi cation on 
calcifying organisms, which may counter 
or exacerbate direct effects, is uncertain. 
Using volcanic CO2 vents, we tested the 
indirect effects of ocean acidifi cation on 
a calcifying herbivore (gastropod) within 
the natural complexity of an ecological 
system. Contrary to predictions, the 
abundance of this calcifi er was greater 
at vent sites (with near-future CO2 levels). 
Furthermore, translocation experiments 
demonstrated that ocean acidifi cation 
did not drive increases in gastropod 
abundance directly, but indirectly as 
a function of increased habitat and 
food (algal biomass). We conclude that 
the effect of ocean acidifi cation on 
algae (primary producers) can have a 
strong, indirect positive infl uence on the 
abundance of some calcifying herbivores, 
which can overwhelm any direct negative 
effects. This fi nding points to the need 
to understand ecological processes 
that buffer the negative effects of 
environmental change.

It is widely documented that ocean 
acidifi cation directly reduces the growth, 
survival and reproduction of many 
calcifying species under future elevated 
CO2 conditions [2,3], with molluscs 
described as being particularly vulnerable 
[4]. This intuitively suggests that ocean 
acidifi cation has negative ramifi cations 
for the persistence of calcifi ers in future 
oceans, which in turn will have fl ow-
on effects to the broader ecosystem. 
Such conclusions are, however, largely 

Correspondence drawn from single-species studies and 
simplifi ed experimental ‘communities’ 
that may not necessarily translate to 
natural populations and communities 
[5]. For instance, fuelled by increased 
carbon availability, increased plant 
growth (primary productivity) has 
the capacity to stimulate greater 
consumption by secondary producers, 
so that CO2 indirectly acts as a resource 
(e.g. habitat and food) for herbivorous 
calcifi ers. These positive effects 
might overwhelm the direct negative 
effects of physiological stress of ocean 
acidifi cation. 

We tested the indirect effects of 
ocean acidifi cation by examining the 
relationships between food and habitat 
(algal turfs) and a highly-abundant, 
herbivorous calcifying gastropod 
(Eatoniella mortoni) within a complex 
ecological system (i.e. CO2 vents in 
the southwest Pacifi c; Supplemental 
Information). The potential for these taxa 
to interact are known from mesocosm 
studies [6] but are yet to be examined in 
their natural context, where acclimated 
benthic communities are shaped by 
long-term exposure to elevated CO2. 
At these vents, indirect effects were 
the primary driver of net ecological 
change. First, biomass of habitat-
forming turf is greater at vent sites than 
control sites (mean ± SE: 2.66 ± 0.11 
vs 1.16 ± 0.21 g per quadrat), which 
drives greater levels of net primary 
productivity or oxygen production 
(Figure 1A; Supplemental information). 
Second, this boost to habitat biomass 
is positively correlated with gastropod 
abundance, with more gastropods at 
vent sites than control sites (82 ± 8.6 vs. 
35 ± 4.7 per quadrat). Analysis of these 
observational differences indicates that 
gastropod abundance responded more 
to differences in habitat rather than 
elevated CO2 (Figure 1B, Supplemental 
information). To further test whether 
indirect effects of increased CO2 (i.e. 
enhanced habitat biomass and primary 
productivity) were the key driver of 
gastropod abundance, we undertook 
reciprocal translocation experiments 
of algal turfs between and within 
vent and control sites. We found that 
gastropod abundance responds more 
to an increase in algal habitat (ANOVA: 
F1,32 = 40.7, p < 0.001) rather than 
elevated CO2 (F3,32 = 0.73, p = 0.553), 
independently of origin or target 
location. 
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Our study demonstrates that primary 
productivity is greater at natural CO2

 vents 
and that this counterintuitively drove, 
via provision of more habitat and food, 
greater abundance of an herbivorous 
calcifi er. This classic type of indirect 
effect suggests that whilst the direct 
effects of ocean acidifi cation are readily 
detectable (e.g. survival, calcifi cation, 
growth, development, and reproduction 
[3]), indirect effects of ocean acidifi cation 
may leave a stronger imprint on species 
abundance. Therefore, not all calcifying 
organisms may undergo population 
decline, as predicted from small-scale 
laboratory and mesocosm experiments 
focussing only on direct effects [2]. 
Instead, some may undergo population 
increase. Indirect effects represent a suite 
of powerful mechanisms that shape the 
structure and functioning of ecological 
communities, but often result in surprising 
outcomes that cannot be predicted 
by investigating direct effects alone 
[7]. Whilst the indirect effects of ocean 
acidifi cation on species interactions were 
initially surprising, we are only beginning 
to appreciate their ubiquity and strength 
[8,9]. We show how a vulnerable calcifi er 
can benefi t from elevated CO2 and 
consequently thrive under physiologically 
stressful conditions (i.e. the increased 
energetic demands associated with 

acid-base regulation and building shell 
material) due to the counteracting role of 
increased food and habitat. 

To date, most scientifi c thinking has 
focused on enriched CO2 as a stressor 
by way of its associated reduction 
in aqueous pH. Whilst a stressor 
can be defi ned as an environmental 
disturbance that affects organisms 
negatively, it only captures one 
direction of biological response. Yet, as 
shown in this study, enriched CO2 can 
act positively. Carbon enrichment acts 
as a direct resource for photosynthetic 
organisms [10]. Indirectly, therefore, 
increased CO2 can act as a resource 
to consumers via the provision of food 
and habitat. Whilst ocean acidifi cation 
has long been considered a stressor to 
calcifi ers, this preoccupation tends to 
bound the range of responses we might 
anticipate (i.e. type and magnitude of 
negative response), thereby limiting our 
capacity to anticipate the factors that 
accelerate or stabilise against changes 
in ecological communities. 
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Figure 1. Response of a calcifying herbivore to future anthropogenic CO2 enrichment within 
the natural complexity of their environment. 
The response of (A) primary productivity (F1,47

 = 29.9, p < 0.001) and (B) gastropod abundance 
(F1,53

 = 21.4, p < 0.001) to increasing algal biomass (grams per quadrat) at two control sites (pre-
sent-day CO2 levels; black circles and squares) and two vent sites (future CO2 levels; white circles 
and squares). Graph lines illustrate positive associations and images (C) illustrate present-day  
and future primary productivity and present-day and future gastropod abundance.


