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a b s t r a c t

The increasing abundances of the thermophilous black sea urchin Arbacia lixula in the Mediterranean Sea
are attributed to the Western Mediterranean warming. However, few data are available on the potential
impact of this warming on A. lixula in combination with other global stressors such as ocean acidification.
The aim of this study is to investigate the interactive effects of increased temperature and of decreased
pH on fertilization and early development of A. lixula. This was tested using a fully crossed design with
four temperatures (20, 24, 26 and 27 !C) and two pH levels (pHNBS 8.2 and 7.9). Temperature and pH had
no significant effect on fertilization and larval survival (2d) for temperature <27 !C. At 27 !C, the
fertilization success was very low (<1%) and all larvae died within 2d. Both temperature and pH had
effects on the developmental dynamics. Temperature appeared to modulate the impact of decreasing pH
on the % of larvae reaching the pluteus stage leading to a positive effect (faster growth compared to pH
8.2) of low pH at 20 !C, a neutral effect at 24 !C and a negative effect (slower growth) at 26 !C. These
results highlight the importance of considering a range of temperatures covering today and the future
environmental variability in any experiment aiming at studying the impact of ocean acidification.

! 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the beginning of the industrial revolution and the exten-
sive use of fossil fuels, global atmospheric CO2 concentration has
increased from 280 to 380 ppm and is expected to double by 2100
with well described consequences for climate (global warming,
increase in extreme events frequency, etc.). The ocean represents a
major sink and absorbs half of the excess of CO2. This continued
uptake of CO2 alters the carbonate chemistry of the ocean and in-
creases the concentration of hydrogen ions, thereby reducing pH, a
phenomenon called ocean acidification (Caldeira and Wickett,
2003). The mean global surface temperature has increased
0.76 !C in the past 150 years and is predicted to rise an additional
1.1!Ce6.4 !C by the end of the twenty-first century (IPCC, 2007;

Fabry et al., 2008). Ocean acidification scenarios project a
DpH ¼ #0.3 to #0.5 units by the end of the century.

The influence of temperature and pH on echinoderms is well
documented as single stressors (e.g. Dupont et al., 2010a; Byrne,
2011; Dupont and Thorndyke, 2013). Temperature impacts me-
tabolisms and modulates performance (Byrne, 2011). Direct im-
pacts of ocean acidification on sea urchins are mostly negative but
sub-lethal. These include slower somatic and gonadal growth and
reflect a shift in energy budgets linked to additional costs for
extracellular pH (pHe) and intracellular pH (pHi) regulations rather
than direct impact on calcification (Dupont and Thorndyke, 2013).
However, interaction between temperature and ocean acidification
was only considered in a limited number of studies (Sheppard
Brennand et al., 2010; Byrne et al., 2009, 2010a,b; 2011; Caldwell
et al., 2011; Catarino et al., 2012a; Ericson et al., 2012; Foo et al.,
2012). From this limited dataset, it appears that interaction be-
tween temperature and ocean acidification is complex from tem-
perature being the main driver of change to temperature
amplifying or diminishing the negative effects of ocean acidifica-
tion. For example, in adult Paracentrotus lividus oxygen uptake was
increased under ocean acidification at 10 !C but not at 16 !C
(Catarino et al., 2012a). Warming seemed to diminish the negative
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effect of acidification onTripneustes gratilla larval growth (Sheppard
Brennand et al., 2010). Pörtner and Farrell (2008) developed a
theoretical framework to predict the combined impact of temper-
ature and ocean acidification. All organisms live within a limited
range of body temperatures, due to optimized structural and ki-
netic coordination of molecular, cellular, and systemic processes,
and functional constraints result at temperature extremes. It is
hypothesized that synergistic stressors like ocean acidification have
the potential to narrow these thermal windows. This theoretical
framework highlights the fact that response to ocean acidification
can be highly dependent upon thermal conditions. This can explain
apparently conflicting results. For example, warming may lead to
increased resilience to ocean acidification in experiments done at
the lower end of the optimal temperature range of the species, but
can enhance sensitivity when an experiment is done close to the
upper limit of the thermal tolerance. It is then critical, in any
experimental design, to cover the natural range of present and
future thermal ranges naturally experienced by any given species to
fully understand the potential impact of ocean acidification.

Research on global changes needs to focus on species which play
dominant structuring roles in ecosystems (e.g. herbivores; habitat-
forming species; Russell et al., 2012). Sea urchins are excellent
candidates. They are important grazers that structure habitats and
affect temporal dynamics and ecosystem functions (e.g. through
trophic cascades; Sala et al., 1998; Bonaviri et al., 2012; Hereu et al.,
2012).

The black Arbacia lixula is a common inhabitant of shallow-
water hard grounds throughout the Mediterranean Sea. It is also
found on the other side of the Atlantic, but only in the Southern
Hemisphere, off the coast of Brazil (Gianguzza and Bonaviri, 2013).
It is currently one of the most abundant echinoids in shallow rocky
habitats of the southernMediterranean (Guidetti and Dul!ci"c, 2007).
This species has a considerable trophic plasticity, ranging from
omnivory to strict carnivory (Wangensteen et al., 2011; Agnetta
et al., 2013) and its scraping predatory behaviour can play a
dominant role in driving switches between one complex state,
dominated by a stratified assemblage of several erect macroalgae,
to a simpler one dominated by few encrusting algae: the so-called
‘barren ground’ (Bonaviri et al., 2011; Wangensteen et al., 2012;
Agnetta et al., 2013). New and increasing evidence suggests that
on-going warming of the Western Mediterranean results in an
environment increasingly favourable for the reproduction and
development of A. lixula (Francour et al., 1994; Guidetti and Dul!ci"c,
2007; Gianguzza et al., 2011; Privitera et al., 2011; Lessios et al.,
2012; Wangensteen et al., 2012).

Considering the great colonizing potential shown by this spe-
cies, including the ability to cross trans-oceanic barriers to gene
flow (Wangensteen et al., 2012), and the massive potential impact
of its grazing on coastal ecosystems, it is critical to evaluate how
this potential will be modulated by near-future changes such as
ocean warming and acidification. In the Western Mediterranean,
the planktotrophic A. lixula larvae occur in the water column be-
tween Spring and Autumn and can be exposed to the full range of
the temperature natural variation (15e24 !C; Fenaux, 1968;
Pedrotti, 1993).

The present study aims to investigate the combined impacts of
ocean warming and acidification on the early life-history stages of
the sea urchin A. lixula. The impact of ocean acidification and
warming was tested using a fully crossed design with four temper-
atures (20, 24, 26 and 27 !C) and two pH levels (pHNBS 8.2, present
average pH and pHNBS 7.9, pH projected by 2100). The selected
temperatures cover the upper part of today and near-future envi-
ronmental variability. Based on Pörtner and Farrell (2008), we pre-
dicted an overall negative impact of pH on the tested parameters
(fertilization, larval survival and developmental rate).

2. Materials and methods

2.1. Animal collection and maintenance

Adult A. lixula (test diameter of 35e45 mm) were collected in a
shallow rocky shore (3e5 m) along the coast of Palermo
(38!1104500N-013!1405800E) during the peak reproductive season
from May to September 2010 (G. Visconti, unpublished data).
Collected animals were brought to the laboratory and were kept
prior to the experiment for less than 24 h in recirculating tanks at
constant temperature (20 !C) and pHNBS (8.2).

2.2. Fertilization and larval culture

To avoid male-female incompatibility and mimic field fertiliza-
tion success, fertilizationwas conducted with gametes pooled from
multiple males and females. Six females and six males were used.
Gonads were dissected and rinsed few times in filtered seawater
(FSW; Millipore filter 0.45 mm). Eggs were collected and mixed.
Sperm was collected, mixed and kept dry before use. Replicates of
900 ml of mixed eggs dilution (1500 eggs/L) were pre-incubated in
experimental FSW for 15 min and then mixed 200 ml of dry sperm
(final concentration of 3000 sperm/mL) in each replicate for
fertilization. During larval culture, therewas no food supply and the
larvae subsisted on their own reserves.

2.3. Experimental treatments

Eight different treatments were tested: 4 temperatures (20!,
24!, 26!, 27 !C) % 2 pH (8.2 and 7.9). Each treatment was repli-
cated 6 times. The seawater pH was adjusted by bubbling CO2 until
the target pH was reached. Cultures were then kept in closed
bottles for 2d and gently mixed using motor driver paddles.
Temperature was maintained using an immersion heater. Tem-
perature and pH was measured 5 times over the course of the
experiment. pH was measured using a pH meter (Crison GLP21)
calibrated with NBS buffers. The carbonate system speciation
(pCO2, Uca and Uar) was calculated from pHnbs, temperature,
salinity (38) and alkalinity (AT ¼ 2.5 mM; Rivaro et al., 2010) using
CO2SYS (Lewis and Wallace, 1998) with dissociation constants
from the study by Mehrbach et al. (1973) refitted by Dickson and
Millero (1987).

2.4. Measured parameters

Three 1 ml samples were collected in each replicate (48 cul-
tures) at 4 h, 12 h, 24 h, 36 h and 48 h and fixed with few drops of
formaldehyde (10% in FSW). Eggs, embryos and pluteus larvae were
counted in each sample and fertilization success (%) after 4 h was
calculated for each replicate as the ratio between successful fertil-
ization (embryos with 2e8 cells) and unfertilized eggs. Mortality
after 48 h was calculated for each replicate as:

Mortalityð%Þ ¼ 100x½1# ðlarval density at 48h=initial densityÞ)

For each replicate, the % of pluteus larvae (100 % [number of
pluteus larvae/number of embryos and larvae]) was calculated at
12 h, 24 h, 36 h and 48 h. A limited number of larvaewere scored for
each replicate and time point (<50) and to improve the power of
this parameter, the replicates were merged for each treatment. The
dynamic of development was characterized by the inflection point
of a Gompertz equation of an asymmetrical growth curve estimated
by least-square method from % of pluteus larvae and time
(Krönström et al., 2007).
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2.5. Statistics

Each mean value is expressed with its standard error of mean
(mean * SEM). Two factor model ANOVA was used to test the
impact of treatment (fixed, pH and temperature) on fertilization
success and mortality. When relevant, Scheffe’s post-hoc test was
used to test difference between treatments. The ShapiroeWilk test
(1965) was used to confirm that the data were normally distributed
and the Levene test was used to confirm that variances were ho-
mogenous. All data were analysed using SAS/STAT software.

3. Results

3.1. Seawater chemistry

Temperature and pHnbs were maintained at the target level over
the course of the experiment (Table 1). Significant difference in
temperature were maintained between the temperature treat-
ments (ANOVA 3, F¼ 236.27, p< 0.0001; temperature, F¼ 3306.79,
p < 0.0001) with no significant differences between nominal pH
(F ¼ 0.02, p ¼ 0.88) or replicates (F ¼ 0.38, p ¼ 0.93) within a
same nominal temperature. For pH, our treatments were control
seawater (nominal pH ¼ 8.2, pHnbs ¼ 8.16 * 0.01;
pCO2 ¼ 511.00 * 8.85 matm, Uca ¼ 4.77 * 0.07, Uar ¼ 3.08 * 0.04)
and elevated pCO2 (nominal pH ¼ 7.9, pHnbs ¼ 7.90 * 0.01;
pCO2 ¼ 1053.41 * 34.32 matm, Uca ¼ 2.91 * 0.07, Uar ¼ 1.88 * 0.05).
Significant difference in pHnbs were maintained between the pH
treatments (ANOVA 3, F ¼ 12.22, p < 0.0001; pH, F ¼ 255.86,
p < 0.0001) with no significant differences between nominal
temperature (F ¼ 0.98, p ¼ 0.46) or replicates (F ¼ 2.51, p ¼ 0.06)
within a same nominal pH.

3.2. Impact of pH and temperature on fertilization success

Fertilization success of A. lixula at 4 h was high (>85%) at 20 !C
and decreased with increasing temperature (68% at 24 !C, 55% at
26 !C and <1% at 27 !C; Fig. 1). pH had no significant effect on
fertilization success (ANOVA 2, model: F ¼ 14.01, p < 0.001; pH:
F¼ 0.07, p¼ 0.79) with no interactionwith temperature (pHxtemp:
F ¼ 0.05, p ¼ 0.98). Temperature had a significant effect on fertil-
ization success (temp: F ¼ 32.61, p < 0.001), 27 !C (<1% fertiliza-
tion) being significantly different than all other temperatures
(Scheffe’s post-hoc test, p < 0.05; >50% fertilization>50%
fertilization).

3.3. Impact of pH and temperature on mortality

Mortality at 48 h was highly variable among treatments (be-
tween 11 and 100%; Fig. 2). However, only temperature has a sig-
nificant effect on mortality (model: F ¼ 5.95, p < 0.001; temp:

F ¼ 11.18, p < 0.001), 27 !C with 100% mortality was significantly
different from all other temperatures (Scheffe’s post-hoc test,
p < 0.05). No significant effect of pH was observed (pH: F ¼ 3.72,
p¼ 0.06) with no interactionwith temperature (pHxtemp: F¼ 1.33,
p ¼ 0.28).

3.4. Impact of pH and temperature on developmental rate

The inflexion point (Ip in h) from a Gomperz growth model
between time (h) and % of pluteus larvae was calculated as a proxy
for developmental rate. At pH 8.2, development to the pluteus stage
was faster in warmer temperature (Ip increasing from 19.62 h at
20 !C to 11.20 h at 26 !C; Fig. 3). The pH effect of developmental rate
was dependent of the temperature. At 20 !C, the development was
faster at pH 7.9 (Ip ¼ 9.57 h) compared to pH 8.2 (Ip ¼ 19.62 h;
Fig. 3A). At 24 !C, the development was similar at both pH (Ip¼ 14 h
at pH 8.2 and Ip ¼ 12.33 at pH 7.9; Fig. 3B). At 26 !C, lower pH had a
negative effect on developmental rate leading to a slower devel-
opment (Ip ¼ 25.45) at pH 7.9 compared to pH 8.2 (Ip ¼ 11.20;
Fig. 3C). The mortality rate at 27 !C was 100% and it was therefore
not possible to calculate a developmental rate.

4. Discussion

4.1. Physiological consequences

4.1.1. Impact of ocean acidification and warming on fertilization
Our results showed that fertilization success in A. lixula e

measured as the number of cleaving embryos after 4 hewas robust
to both ocean acidification (DpH ¼ #0.3) and warming for tem-
perature<27 !C. At higher temperature (27 !C), fertilization success

Table 1
Seawater carbonate chemistry during the experiment. The carbonate system speciation (pCO2,Uca andUar) was calculated from pHnbs, temperature, salinity (38) and alkalinity
(AT ¼ 2.5 mM; Rivaro et al., 2010) using CO2SYS (Lewis and Wallace, 1998).

Nominal Measured Calculated

Temp [!C] pH Temp [!C] pHnbs pCO2 (matm) Uca Uar

20 8.2 20.35 * 0.05 8.16 * 0.01 497.96 * 16.52 4.34 * 0.10 2.77 * 0.06
20 7.9 20.25 * 0.04 7.89 * 0.01 1000.54 * 27.33 2.51 * 0.06 1.60 * 0.04
24 8.2 24.39 * 0.04 8.15 * 0.01 518.63 * 15.11 4.79 * 0.10 3.09 * 0.06
24 7.9 24.48 * 0.07 7.86 * 0.02 1166.19 * 76.11 2.73 * 0.12 1.76 * 0.08
26 8.2 26.10 * 0.08 8.16 * 0.01 509.66 * 17.22 5.14 * 0.12 3.33 * 0.08
26 7.9 26.04 * 7.97 7.97 * 0.02 895.04 * 0.02 3.55 * 0.13 2.30 * 0.13
27 8.2 26.90 * 0.07 8.14 * 0.01 544.74 * 14.99 4.97 * 0.08 3.23 * 0.05
27 7.9 27.21 * 0.11 7.83 * 0.03 1264.36 * 87.81 2.77 * 0.18 1.80 * 0.12
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Fig. 1. Impact of pH and temperature on A. lixula fertilization success at 4 h.
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was dramatically reduced at less than 1%. The impact of ocean
acidification (DpH < #0.7), alone (11 articles) or in combination
with increased temperature (6 articles), on gametes and fertiliza-
tion was tested on 15 other echinoderm species. In 7 species, ocean

warming and acidification had no effect of fertilization success
(Centrostephanus rodgersii, Byrne et al., 2010b; Echinometra
mathaei, Kurihara and Shirayama, 2004; Kurihara et al., 2004;
Heliocidaris tuberculata, Byrne et al., 2010b; Hemicentrotus pul-
cherrimus, Kurihara and Shirayama, 2004; Kurihara et al., 2004;
Meridiastra calcar, Nguyen et al., 2012; Patiriella regularis, Byrne
et al., 2010b; T. gratilla, Byrne et al., 2010b). Ocean acidification
reduced fertilization success in Arachnoides placenta (Gonzalez-
Bernat et al., 2012) and Strongylocentrotus franciscanus (Reuter
et al., 2011) and in two other species, ocean acidification had no
negative effect on fertilization except at low sperm concentration
(Odontaster validus, Gonzalez-Bernat et al., 2013) or when com-
bined with increased temperature (Sterechinus neumayeri, Ericson
et al., 2010, 2012). Mixed responses from negative to positive
were observed in P. lividus (Moulin et al., 2011; Martin et al., 2011)
and Heliocidaris erythrogramma. Using similar pH changes and
working on the same species (H. erythrogramma), Byrne et al.
(2009; 2010a,b) showed no effect on fertilization while
Havenhand et al. (2008) showed a negative effect. This may partly
reflect difference in experimental design (polyandry vs single male-
female crosses, sperm concentration, stability of pH, use of different
sperm:egg ratio, sperm-egg contact time etc.; e.g. Reuter et al.,
2011) but also individual variability in reproductive success
(Schlegel et al., 2012). Our results which showed no effect of ocean
acidification on fertilization success were then consistent with
most of the published data. However, we only considered a high
sperm-egg ratio (2000:1) and long sperm-egg contact time and our
results may underestimate this impact. Extreme temperature
(27 !C) was inhibiting fertilization (<1%). A similar impact was
observed in H. erythrogramma (Byrne et al., 2009). As a conse-
quence, A. lixula fertilization might be sufficiently resilient to near-
future ocean warming and acidification although it should be
impaired during extreme warming events. Such results emphasise
the pressing need to identify approaches that can rapidly assess the
degree of stress experienced by populations, integrate the effects of
multiple stressors and predict the likely outcome for population
persistence (Sokolova et al., 2012; Sarà et al., 2012).

4.1.2. Impact of ocean acidification and warming on larval survival
In the majority of tested species (9 out of 13), ocean acidification

had no effect on larval survival (see Dupont and Thorndyke, 2013
for review). In the other 4 species, the impact was an increased
mortality (Arachnoides placenta, Gonzalez-Bernat et al., 2012;
Odontaster validus, Gonzalez-Bernat et al., 2013; Patiriella regularis,
Byrne et al., 2013) with a 100% mortality within 7 days observed in
the brittlestar Ophiothrix fragilis (Dupont et al., 2008). Our results
showed that ocean acidification, alone or in combination with
elevated temperature (<27 !C) do not increase the larval mortality.
At the highest temperature (27 !C), all larvae experienced increased
mortality, dying in only 3d. Present result is consistent with that
observed in the larval sea star Patiriella regularis (Byrne et al., 2013)
and it represents a further support on the fact that the temperature
is the main factor limiting fertilization and larvae survival as
recently showed by many studies on thermal tolerance limits of
marine ectotherms (Kooijman, 2010 for review). In our experi-
mental species, larvae were subjected to an evident physiological
tipping point around 27 !C. Such a result mirrored the physiological
tolerance limits of A. lixula larvae resembling the western Medi-
terranean pelagic thermal habitat where it lives. Temperature of
water masses of the first infralittoral zone (from subsurface to the
first thermocline at about 10e13 m) is on average indeed around
24e26.5 !C in SouthernMED, rarely exceeding the 27 !C unless for a
few hours during warmer days. A. lixula larvae could moreover live
very close to the edge of their metabolic machinery functioning
(Sarà et al., 2011). As a consequence, warming in a context of

Fig. 2. Impact of pH and temperature on A. lixula mortality 48 h post-fertilization.
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climate change or heating waves (e.g. Garrabou et al., 2009) may
lead to mass mortalities of sea-urchin’s larval reservoir as shown
for other benthic organisms (Cerrano et al., 2000).

4.1.3. Impact of ocean acidification and warming on larval growth
Growth rate is a more sensitive endpoint to environmental

changes and one of the most documented effects of ocean acidifi-
cation on larval stages is a delay in development. For example 16
out of the 19 tested species of echinoderm’s larvae showed a delay
in development when raised in ocean acidification conditions (see
Dupont and Thorndyke, 2013 for review). Temperature has a very
well described positive effect on growth rate up to the optimum
growth ratewhile extreme increasing temperatures induce delay in
development (Duarte, 2007). Only 3 studies studied the combina-
tion between warming and acidification on echinoderm larvae. In
seastar Meridiastra calcar larval growth rate decreased while tem-
perature increased although there was not any effect from acidifi-
cation treatment (Nguyen et al., 2012). Based on the theoretical
framework developed by Pörtner and Farrell (2008) it was pre-
dicted that (i) response to ocean acidification is modulated by
temperature and, (ii) ocean acidification can only drive negative
response in animals. For example, it is predicted that warming can
increase resilience to ocean acidification on the cold side of a spe-
cies optimal temperature, but enhances sensitivity when a species

experiences both drivers close to its upper limits of thermal toler-
ance. This is supported by most of the work published on the
impact of ocean acidification on echinoderm larvae with two
noticeable exceptions as follows: (i) a þ3 !C warming minimized
the negative effect of acidification on larval growth in the larvae of
the sea urchin T. gratilla (Sheppard Brennand et al., 2010) and (ii)
larval stages of the sea star Crossaster papposus increased their
growth when exposed to ocean acidification (Dupont et al., 2010b).
Our results challenged the hypothesis that ocean acidification can
only have a negative impact on larval development. Indeed, tem-
perature modulates the impact of decreasing pH on the develop-
mental rate with a positive effect (faster growth) under ocean
acidification conditions at 20 !C, a neutral effect at 24 !C and a
negative effect (slower growth) at 26 !C. This apparent paradox can
be solved thanks to a good mechanistic understanding of the
impact of both temperature and ocean acidification on larval
physiology and energy budget (Fig. 4). Both increased temperature
(e.g. Peck and Prothero-Thomas, 2002) and pH (Stumpp et al., 2011,
2012) induce an up-regulation of larval metabolism. An increased
metabolism under non-limiting energy conditions can translate
into an increased scope for growth. This explains the well-
documented positive effect of temperature on growth rates since
temperature often leads to an increased metabolism and an in-
crease in food uptake (e.g. Podolsky and Emlet, 1993). This can also

Fig. 4. Theoretical predictive model showing the relationship between echinoderm larval fitness, growth and metabolism under different environmental challenges. Optimal
conditions are defined by the range of metabolism and growth without negative consequence for fitness (survival). An increase in metabolism is first associated with an increased
growth till the point of energy limitation. Then, any increase in metabolism lead to a reduced scope for growth and a decreased growth. Both ocean warming and acidification are
inducing an increase in metabolism (shift to the right on the metabolic curve) till the point of metabolic depression and lethality. Ocean acidification can then lead to a positive
effect (not energy limiting conditions, green dots) or a negative effect (energy limiting conditions, red dots) on growth rates depending on the baseline metabolism. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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explain the positive effect of ocean acidification on the larvae of the
sea star Crossaster papposus (Dupont et al., 2010a,b,c). It was hy-
pothesized that the lecithotrophic life-history strategy (production
of few energy rich eggs) allowed an increased growth following an
increased in metabolism. On the other hand, under limiting energy
conditions, an increased metabolism is associated with a reduced
scope for growth as demonstrated in sea urchin larvae exposed to
ocean acidification conditions (Stumpp et al., 2011). We can also
hypothesize that under extreme stress, larvae are unable to
compensate for the environmental challenge through increased
metabolism and experience metabolic depression (Pörtner and
Farrell, 2008). In theory, different combinations of increased tem-
perature and pH can then lead to different sublethal biological re-
sponses. (i) If the baseline metabolism is far from its optimal (e.g.
pH 8.2/20 !C in our experiment), the larvae is not energy limited
and an increase in metabolism (e.g. increased temperature or
decreased pH) can lead to an increased growth rate; (ii) If the
baseline metabolism is closer to its optimal (e.g. pH 8.2/26 !C), any
increase in metabolismwill lead to a reduced scope for growth and
lead to a decreased growth rate. Under extreme chronic metabolic
stress (e.g. 27 !C), the effect is lethal. This new model needs to be
tested but any large scale prediction of the combined impact of
ocean warming and acidification would require to better under-
stand the relative contribution of temperature, pH and any other
modulating factors (e.g. food, Marsh and Manahan, 1999) on the
metabolism of marine species (Kooijman, 2010).

4.2. Ecological consequences

A. lixula and its sister species Arbacia punctulata have been the
object of intensive investigations in cell biology, biochemistry of
fertilization and early development (e.g. Harding and Harding,
1952; Castagna et al., 1981; George et al., 1990; De Giorgi et al.,
1991). Recently, renewed interest in this species arose mainly due
to its ecological role, its unusually wide distribution area (from
equatorial waters to temperate Mediterranean) and its warm-water
affinity (Gianguzza et al., 2011; Wangensteen et al., 2012; Privitera
et al., 2011; Agnetta et al., 2013).

A study on its phylogeography and population genetics cor-
roborates the Stefanini (1911) hypothesis (backed by the lack of its
fossil record in Mediterranean) that A. lixula is not a native species
but a thermophilous colonizer, probably originated at tropical
Atlantic region, which spread throughout the Mediterranean dur-
ing the last interglacial period of the Pleistocene (Wangensteen
et al., 2012). In this period, the minimum winter surface tempera-
tures of the Mediterranean Sea had been warmer than 19 !C and
this could have led larvae of the tropical Atlantic population of
A. lixula to cross the Strait of Gibraltar and colonize the Northern
Mediterranean. Furthermore, the authors suggested that the cur-
rent population expansion of A. lixula in Mediterranean could be
due to increased larval success driven by the ongoing climate
warming.

It is well known that one direct consequence of warming is a
simultaneous increase in the abundance of thermo-tolerant species
and the disappearance or rarefaction of ‘cold’ stenothermal species
(CIESM, 2008). From a study on climate warming and the range
extension of thermophilic sea urchin species, a significant positive
relationship between C. rodgersii density and increased ocean
temperatures has been unequivocally proven in eastern Tasmania
(Ling et al., 2008). Hart and Scheibling (1988) report evidence of an
analogous temperature threshold mechanism for Strong-
ylocentrotus droebachiensis along the Atlantic coast of Nova Scotia
where sea urchin population booms and associated were correlated
with a positive ocean temperature anomaly allowing optimal
temperatures for larval development.

To date, few studies were focused on the impact of ocean
acidification on Arbacia spp. development. The sub-Antarctic spe-
cies Arbacia dufresni experienced a delay in development when
raised at low pH with no effect on survival (Catarino et al., 2012b).
Carr et al. (2006) showed that pH tolerance limits for the fertil-
ization and embryological development (2 days) of A. punctulata
were 6.9e8.8.

According to our data, it is likely that recent and future warming
of the Western Mediterranean can result in an environment
increasingly favourable for the reproduction and development of a
thermotolerant species such as A. lixula (Privitera et al., 2011). We
undoubtedly show that both fertilization and early larval devel-
opment, using gamete from A. lixula adults acclimatized at 20 !C,
were thermotolerant to 26! (þ6 !C above sea surface temperature
SST). Developmental rate was 1.7 times faster at 26 !C compared to
20 !C with no negative consequences on fertilization rate and
survival. This also indicates that A. lixula may be in sub-optimal
conditions in the Mediterranean and may then benefit from
future ocean warming. Ocean acidification has a negative effect at
the higher temperature (26 !C) showing that it may constrain the
positive effect of warming. In the future ocean, larvae of the A. lixula
may experience short-term exposure to these more challenging
temperatures (>24 !C) with unknown consequences for their
fitness. It is then difficult to make any prediction on the combined
impact of ocean warming and acidification but it seems likely that
on the short term, A. lixula can benefit from the positive effect of
both warming and acidification on their larval growth rate and then
experience a higher survival rate through decreased predation
(Dupont et al., 2010c).

Calosi et al. (2013) showed that density of adult A. lixula was
significantly greater than P. lividus in elevated PCO2/low pH con-
ditions. This pattern could be due to the relatively superior ability of
A. lixula to regulate its extracellular fluid under elevated pCO2
(Calosi et al., 2013).

If A. lixula increases its densities in the foreseeable future, it
could have serious consequences for the Mediterranean ecosystem
diversity and functioning. Many authors support the increasing
evidence that A. lixula, less prone to predation than P. lividus, may
establish a positive feedback which tends to stabilize and maintain
the barren grounds in rocky littoral ecosystems (Bonaviri et al.,
2011). Despite its ecological importance, no information was
available on the impact of ocean acidification on A. lixula.

More research is needed to fully investigate the combined im-
pacts of ocean acidification and warming on A. lixula including
long-term exposure (including subsequent life-history stages, e.g.
Dupont et al., 2012) allowing estimating acclimation and adapta-
tion potential, the modulating role of ecological interactions and
other environmental parameters (Kroeker et al., 2013). Future
research should also aim at the investigation of the effects of
multiple stressors on sea urchin recruitment and adult survival.
This would allow obtaining the objective and completing the un-
derstanding of sea urchin population dynamic and potentially
resultant effects on benthic community, in relation with global
changes.
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