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A B S T R A C T   

Biodiversity plays a key role for our planet by buffering ongoing and future changes in environmental conditions. 
We tested if canopy-forming algae enhancing biodiversity (CEB) in a Mediterranean intertidal reef ecological 
community could alleviate the effect of stressors (heat waves and pollution from sewage) on community 
metabolic rates (as expressed by oxygen consumption) used as a proxy of community functioning. CEB exerted a 
buffering effect related to the properties of stressor: physical-pulsing (heat wave) and chronic-trophic (sewage). 
After a simulated heat wave, CEB was effective in buffering the impacts of detrimental temperatures on the 
functioning of the community. In reefs exposed to chronic sewage effluents, benefits derived from CEB were less 
evident, which is likely due to the stressor's contextual action. The results support the hypothesis that ecological 
responses depend on stressor typology acting at local level and provide insights for improving management 
measures to mitigate anthropogenic disturbance.   

1. Introduction 

In the virtual arms race between Man and Nature, ecological com-
munities have one of the most powerful weapons to counteract 
anthropogenic action: biodiversity. A recent meta-analysis (Pires et al., 
2018) shows that biodiversity can buffer the effects of stressors, thus 
stabilizing ecosystem functioning processes under changing, episodic or 
fluctuating environmental conditions. Pires et al. (2018) state that the 
more diverse the communities and the higher the functional redun-
dancy, the greater the likelihood that disturbance effects will be 
absorbed (Standish et al., 2014). This enables the system to increase 
local adaptation in a changing environment (Loreau and de Mazancourt, 
2013; Zelnik et al., 2018) and prevents the loss of other species from the 
system (Verhoef and Morin, 2009), ensuring ecological prosperity is 
preserved. However, local stressful events are increasing in terms of 
intensity and frequency, challenging the buffering/stabilizing ability of 
biodiversity (e.g., Gutschick and Bassirirad, 2003; Dal Bello et al., 2017). 
Despite the detrimental impacts on our planet's environmental condi-
tions, which are exacerbated by climate change and habitat fragmen-
tation (Rahmstorf and Coumou, 2011; Ummenhofer and Meehl, 2017), 
our collective knowledge on the potential buffering role of biodiversity 
when faced with multiple stressors remains limited. Many scientific 

questions regarding biological and ecological responses to different 
disturbance typologies remain unanswered (Van de Pol et al., 2017). 
Stressors have different implications on multi-level hierarchical 
ecological responses (Sergio et al., 2018). Both the temporal (e.g., 
timespan and frequency of occurrence, etc.) and spatial components of 
stressors are useful to predict the potential effects of disturbance on 
ecological communities (Zelnik et al., 2018). For example, chronic 
exposure to temperatures that exceed individual temperature optima, 
may affect individual Darwinian fitness and survival effecting pheno-
typic plasticity and/or reproduction and growth (Pörtner and Knust, 
2007). Pulsing events of thermal stress due to heat waves or hypoxia can 
impair the survival rate of organisms and affect the internal equilibria of 
population dynamics (e.g., birth and death of individuals) in local 
communities (Meehl and Tebaldi, 2004; Hobday et al., 2016; Oliver 
et al., 2018; Pansch et al., 2018; Sampaio et al., 2021; Sarà et al., 2021). 
Yet, the magnitude of effects depends on how the pulsing events are 
temporally clustered and whether the community had been previously 
exposed to other disturbance events: the so-called legacy effect (Dal 
Bello et al., 2017; Jackson et al., 2021). Multiple stressors can directly 
impact biodiversity through alterations to the abiotic components, the 
structure of populations and the composition of communities, organ-
ismal phenology (Edwards and Richardson, 2004; Harley et al., 2006; 
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Suding et al., 2008; Doney et al., 2012, Mills et al., 2013; sensu Post, 
2019), the distribution range of native species (Hawkins et al., 2009; 
Mills et al., 2013) and the expansion of invasive species (Simberloff 
et al., 2013; Rilov, 2016; Sarà et al., 2018). Although marine intertidal 
species may exhibit high tolerance limits and plasticity, prolonged or 
recurrent acute exposure to climatic or anthropogenic stressors may 
have detrimental effects on their metabolism and the ability to cope and 
adapt to these changing circumstances (Somero, 2002). Consequently, a 
reduction in energy availability for growth and reproduction may occur 
over time (Stillman et al., 2003; Pörtner et al., 2005). For example, faced 
with continually changing circumstances, Mediterranean vermetid 
reefs, located along the 38–39 parallels from Spain to Israel, are un-
dergoing significant local collapse and extinction in the Levantine 
Mediterranean basin. This is probably due to the joint action of rising 
temperatures and increasing anthropogenic stressors that are impairing 
the ecological performance of native communities and facilitating the 
spread and establishment of non-native species, which in turn is pro-
voking a shift in local biodiversity (Sarà et al., 2021). This biogenic reef 
is the result of the complex synergistic building activity of the vermetid 
mollusc Dendropoma cristatum (Biondi 1859) and the encrusting red alga 
Neogoniolithon brassica-florida (Harvey). Since the ecosystem services it 
provides are multi-faceted (including the protection of coasts from 
erosion, regulation of sediment transport, carbon sinks, and the provi-
sion of habitat for many fish and invertebrates) more efforts to under-
stand its response to changing conditions and to improve conservation 
management are urgently needed (Gallardo et al., 2016; Rilov, 2016). 

In the Mediterranean Sea, vermetid reefs represent a unique and 
highly diverse biogenic construction structurally comparable to coral 
reefs in tropical areas (Safriel and Ben-Eliahu, 1991). They are largely 
colonized by one of the most productive and valuable macroalgal for-
ests, formed by the canopy-forming brown macroalgae belonging to the 
Order Fucales Ericaria amentacea (=Cystoseira amentacea) and Cystoseira 
compressa; Mancuso et al., 2018). When present, this canopy-forming 
brown macroalga increases the local three-dimensional complexity 
and spatial heterogeneity, providing food, shelter, and nurseries to many 
associated species, thereby enhancing local biodiversity and produc-
tivity (Ballesteros et al., 1998; Cheminée et al., 2013; Gianni et al., 2013; 
Gorman et al., 2013; Piazzi et al., 2018). Despite the recognized 
importance, the canopy is threatened by many multi-scale interacting 
stressors and the detrimental effects and ecological functioning impli-
cations of its loss – due to interacting local anthropogenic factors – 
remain poorly understood. This study attempted to address these 
knowledge gaps by investigating the role of this canopy-forming mac-
roalga in alleviating the metabolic stress on the underlying community 
(i.e., the vermetid reef) caused by different stressors (physical and 
pulsing, i.e., heat wave; trophic and chronic, i.e., organic enrichment), 
using community metabolic rates (expressed by the standard respiration 
rate; RR) as a proxy of community functioning. Our findings provide 
crucial information needed to explain why vermetid reefs are slowly 
disappearing from the Eastern Mediterranean Sea coasts (Rilov, 2016) 
and will assist scientists, practitioners and managers when designing 
and enforcing ecosystem-based management solutions to achieve the 
resilience of marine ecosystems, promote human well-being and sus-
tainable use of resources (MEA - Millennium Ecosystem Assessment, 
2005). 

2. Materials and methods 

2.1. Selection of stressors 

Intertidal organisms are more tolerant to thermal extremes (Somero, 
2010) than all other animals thanks to their diurnal exposure at low 
tides. However extreme events such as heat waves can impair organ-
ismal functioning by increasing body temperature and desiccation stress 
beyond their tolerance range (Dong and Williams, 2011; Tait and Schiel, 
2013; Pocklington et al., 2017). The detrimental effects of heat waves 

are frequently combined with other chronic stressors such as local 
organic enrichment from uncontrolled sewage discharge. Sewage can 
increase the frequency of hypoxia events and chronic contaminations 
due to several compounds causing stressful exposure over time (Lewis 
and Santos, 2016). To test the ability of canopy forest to alleviate the 
detrimental impacts of climatic and anthropogenic stressors on inter-
tidal reef communities, we selected Ericaria-Cystoseira canopy algae 
complex as the CEB and heat waves combined with massive organic 
enrichment due to sewage discharge as the multiple stressors. 

2.2. Study sites and a priori measurements of chronic disturbance 

The study was carried out on vermetid reef sites covered by canopy- 
forming brown algae along the coastline of the “Capo Gallo - Isola delle 
Femmine” Marine Protected Area (Northern Sicily, Southern Mediter-
ranean Sea) (Fig. 1). The first step was to select sites subjected to the 
chronic stressor, i.e., organic enrichment. Thus prior to the experiment, 
we tested whether pre-selected sites for the experiments differed in 
terms of organic matter discharge due to anthropogenic activities. Two 
sites were selected: one chronically exposed to discharge from a bivalve 
nursery based on the coast where bivalves are usually kept for depu-
ration before being sold (hereafter called SEWAGE - 38◦11′10.32”N; 
13◦21′43.64′′E) and the second at about 1 km south of the first site 
(hereafter called NO-SEWAGE or control - 38◦10′45.59”N; 
13◦21′59.52′′E). Both sites had the same fetch (Burrows et al., 2008), the 
same coastal geometry and the same water column depth. Water sam-
ples were collected from three NO-SEWAGE sites (n = 10 per site) and 
compared against 10 samples collected from the SEWAGE sites accord-
ing to the simplest control vs. impact design (Underwood, 1997). Water 
was collected from the vermetid reefs using Niskin bottles, transported 
in under 2 h to the Ecology laboratory at the University of Palermo, 
filtered through pre-washed, pre-combusted (450 ◦C, 4 h) and pre- 
weighed Whatman GF/F filters (0.45 mm nominal pore size). To 
determine total suspended matter (TSM) concentrations, the filters were 
weighed after desiccation (105 ◦C, 24 h) using a Mettler balance (ac-
curacy ±1 mg). The suspended inorganic fraction (ISM) was calculated 
as the weight of the material remaining after combustion at ~500 ◦C for 
4 h and reported as mg l−1. The suspended organic fraction (OSM), used 
as a proxy of organic enrichment due to the sewage flow, was estimated 
from the difference between TSM and ISM (Modica et al., 2006). This 
first preliminary dataset allowed prior estimations of the amount of 
organic enrichment as a proxy of chronic disturbance. After assessing 
assumptions of normality and homogeneity of variance a two-sample t- 
test analysis was performed, showing significant difference between the 
two sites (t = 5.9711, df = 38, p-value = 6.236⋅10−07), with the SEWAGE 
sites (OSM = 2.64 ± 0.33 mg l−1; n = 10) being about 40% more 
trophically enriched than NO-SEWAGE sites (OSM = 1.73 ± 0.44 mg l−1; 
n = 30). 

2.3. Vermetid sample collection and measuring stressors' effects 

Steps were taken to simulate the effect of a heat wave (48 ◦C) 
experienced during summer exposure at low tides (semidiurnal; 6 h) on 
metabolic rates (Giomi et al., 2016; Sarà et al., 2021; Fig. 1). The oxygen 
consumption rates (RR) were calculated from the decrease in oxygen 
content in the respirometric chambers over time, expressed as μmol h−1 

g−1. Thus, 96 experimental reef patches collected from SEWAGE (n =
48) and NO-SEWAGE (n = 48) locations, half of them with canopy algae 
cover and the other half without (CEB vs NO-CEB) were transported to 
the laboratory and acclimated for 24 h in filtered sea water at the same 
environmental temperature (26 ◦C). Following this, patches were firstly 
immersed independently in water at 26 ◦C (2.4 l volume of closed res-
pirometers supplied with filtered sea water; Millipore GF/C 0.45 μm), 
then the water level was gently lowered in all 96 chambers, and the air 
temperature of 48 of the chambers was increased using heat lamps 
(UVA; Repti Zoo, Italy; 75 W and 100 W) mounted on a lab-made rack to 
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reach 48 ◦C. These patches were hereafter referred to as HEATWAVE 
(See Fig. 2), while the remaining patches (NO-HEATWAVE) were 
maintained immersed at 26 ◦C. Both temperatures were maintained for 
3 h following a Mediterranean cycle of the semi-diurnal tide (Sarà et al., 
2014). The whole emersion phase at HEATWAVE condition lasted 3 h 
and temperature was continually recorded by thermos-loggers (Alpha-
Mac, Canada) set at 1 min. The peak temperature of 48 ◦C was chosen as 
in the last decade intertidal biota at these latitudes have experienced this 
temperature for at least 3 h (ISPRA, http://www.mareografico.it/). 

After the emersion phase, filtered sea water (Millipore GF/C 0.45 
μm) was again gently added to reef patches and after 1 h chambers (1.4 l 
volume) were hermetically closed, and RR was measured using fibre- 

optic oxygen sensors connected to a Pyro Science Firesting O2 oxygen 
meter (PyroScience Inc., Germany). Oxygen concentration within the 
chambers was recorded with a 1.5 s frequency for each experimental 
replicate during the whole experiment. An agitator and small magnets 
were used to maintain homogeneous water mixing inside the experi-
mental chambers (Bosch-Belmar et al., 2016), which were covered with 
an opaque plastic material to avoid possible interference due to the 
respiration of encrusting algae. This set of measures allowed the effect of 
the heat wave (against absence of heat wave) to be estimated, with and 
without the presence of chronic sewage stress on the reef and with and 
without algae coverage. Oxygen consumption was standardized by 
surface area by photographing each patch and estimating the size using 

Fig. 1. Map of the study area (Palermo, Sicily) and sampling sites where experimental patches were collected (SEWAGE corresponds with a bivalve nursery location, 
and NO-SEWAGE refers to a control site). 

Fig. 2. Experimental design followed in the study and results (in terms of RR) obtained from the comparison of the different treatments applied the presence/absence 
of sewage as a chronic stressor (2), and exposure/no exposure to the heatwave pulse stressor (3). CEB/NO-CEB acronyms refer to the presence/absence of canopy- 
forming algae enhancing biodiversity complex (1). 
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ImageJ® free software to perform picture analysis. The mean area of 
experimental patches was of 26.3085 ± 6.57 cm2. 

2.4. Statistical analysis 

The assumption of homoscedasticity and normality of the response 
variable (RR), for each of the treatment levels, were tested using 
Cochran's C test and box plots, and there were no deviations (Logan, 
2010). Thus, differences in RR between the presence/absence of heat 
wave, organic enrichment, canopy and their interaction, were assessed 
using the following sampling design: factor “Heat wave” (Presence vs 
Absence; fixed with 2 levels); factor “Sewage” (SEW, enriched vs non- 
enriched; fixed with two levels and orthogonal to factor Heat wave); 
factor “Canopy” (CEB; fixed with two levels and orthogonal to factors 
Heat wave and Sewage). 

Statistical differences were tested through a Generalized Linear 
Model (GLM) with gamma error family distribution which was the most 
appropriate as the response variables cannot assume negative values (R 
Package “mgcv” by Wood, 2017). Ten different models were tested, and 
the best fitting one was selected based on the lowest Akaike's informa-
tion criteria (AIC) value and the highest value of explained variance 
(Supplementary Information Table S1). Once the model was run, we 
checked the absence of any pattern dealing with the residuals and their 
normality distribution (SI Figs. S1 and S2). To test the significant dif-
ference among the various levels of all factors, we performed a pairwise 
test using an estimated marginal means (or least-squares means) for 
factor combinations in the GLM model (R Package “emmeans” by Lenth, 
2021). All statistical analyses were performed using R software, version 
4.0.3 (R Core Team, 2020, http://cran.r-project.org). 

3. Results 

The metabolic response of the vermetid reef community covered by 
CEB during heat wave exposure (48 ◦C - 3 h) in NO-SEWAGE condition 
did not show any significant difference (GLM, p > 0.05) with respect to 
no-heat wave/NO-SEWAGE experimental patches (Tables 1 and 2; Fig. 3 
- Column 1 vs Column 5). In contrast, under the same undisturbed tro-
phic conditions with NO-CEB, the pulsing effect of increasing tempera-
ture due to heat wave generated a significant difference in the 
community RR (GLM, p < 0.05; Table 2, Fig. 3 - Column 2 vs Column 6). 
Under the sewage condition, when comparing the metabolic response of 
the vermetid reef community covered by CEB during heat wave expo-
sure, once again, the CEB coverage was able to buffer the effect of the 
heatwave on the intertidal community's metabolic response, as revealed 
by the non-significant difference on RR (GLM, p > 0.05; Table 2, Fig. 3 - 
Column 3 vs Column 7). Instead, the absence of canopy (NO-CEB) 
showed a significant difference on patch metabolic rates after exposure 
to the pulsing thermal stressor (GLM, p < 0.05; Table 2, Fig. 3 - Column 4 
vs Column 8). The chronic sewage factor, regardless of the presence of 
canopy, was reflected by a general lower value of the measured meta-
bolic response of reefs (Fig. 3 - Columns 3, 4 vs Columns 1, 2 and Col-
umns 7, 8 vs Columns 5, 6) both with and without heat wave conditions. 
Indeed, apart from the non-significant difference between uncovered 

reefs (NO-CEB), under heat waves (GLM, p > 0.05; Table 2, Fig. 3 - 
Column 6 vs Column 8), the remaining post-hoc comparisons were sig-
nificant showing that chronic trophic stress (SEWAGE) significantly 
affected the reef community metabolic rates (GLM, p > 0.05; Table 2, 
Fig. 3; Columns 1 vs 3; 2 vs 4; 5 vs 7). 

Table 1 
Statistical results of generalized linear model (GLM) analysis (df = degrees of 
freedom; SL = significance level; * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001; ns 
= no significant difference, p > 0.05)).  

Factor χ-quare df P SL 

Heat wave (HW)  0.146  1 0.70 ns 
Sewage (SEW)  60.043  1 9.28E-15 *** 
Canopy (CEB)  0.360  1 0.55 ns 
HW x SEW  4.203  1 0.04 * 
HW x CEB  1.405  1 0.24 ns 
SEW x CEB  8.748  1 0.003 ** 
HW x SEW x CEB  8.849  1 0.002 **  

Table 2 
Post-hoc Pairwise test comparisons for a) heat wave, b) canopy enhancing 
biodiversity complex (CEB) and c) sewage factors, by using an estimated mar-
ginal means for factors combination in the GLM model.  

HEAT WAVE NO-HW, NO- 
SEW, CEB 

NO-HW, 
SEW, CEB 

NO-HW, SEW, 
NO-CEB 

NO-HW, NO- 
SEW, NO- 
CEB 

HW, NO-SEW, 
CEB 0.3235    

HW, SEW, CEB  0.7705   
HW, SEW, NO- 

CEB   0.015  

HW, NO-SEW, 
NO-CEB    0.0353 

CEB NO-HW, NO- 
SEW, CEB 

NO-HW, 
SEW, CEB 

HW, NO-SEW, 
NO-CEB 

HW, SEW, 
NO-CEB 

NO-HW, NO- 
SEW, NO- 
CEB 

0.9968    

NO-HW, SEW, 
NO-CEB  0.883   

HW, NO-SEW, 
CEB   0.0025  

HW, SEW, CEB    0.0103 

SEWAGE NO-HW, NO- 
SEW, CEB 

HW, NO- 
SEW, CEB 

NO-HW, NO- 
SEW, NO-CEB 

HW, NO- 
SEW, NO- 
CEB 

NO-HW, SEW, 
CEB <0.0001    

HW, SEW, CEB  <0.0001   
NO-HW, SEW, 

NO-CEB   <0.0001  

HW, SEW, NO- 
CEB    0.7551  

No-SEW  with CEB

No-SEW  - no CEB

SEW  with CEB

SEW  - no CEB

No-SEW  with CEB

No-SEW  - no CEB

SEW  with CEB

SEW  - no CEB
0.0
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Fig. 3. Metabolic rates of the vermetid reef community (measured through the 
oxygen consumption as a proxy of community functioning) under Ericaria- 
Cystoseira canopy complex (CEB) cover/uncovered conditions, when exposed to 
multiple stressors: presence/absence of chronic sewage pollution (SEW/NO- 
SEW) and a pulsing thermal stressor (heat wave). 

G. Sarà et al.                                                                                                                                                                                                                                    



Marine Pollution Bulletin 171 (2021) 112713

5

4. Discussion 

A wide number of studies have focused on the role of biodiversity in 
stabilizing community ecological responses along environmental pres-
sure gradients (Loreau and de Mazancourt, 2013; Sarà et al., 2021), yet 
less attention has been paid to how stressor properties and occurrence 
(sensu Miller et al., 2011) may affect the ability of biodiversity to fulfil 
this stabilizing function. The active-warming experiment presented here 
provides insights into these questions. It suggests that canopy enhancing 
biodiversity, exerts a buffering effect on the metabolic respiration rate of 
the underlying vermetid reef community, and that this depends on 
stressor properties, i.e., type (physical vs trophic) and frequency and 
duration (chronic vs pulse). After an extreme event such as a heat wave, 
the canopy buffering effect seems able to maintain the plot-scale 
climate, i.e., the microclimatic conditions (Ettinger et al., 2019) of the 
underlying vermetid community. This outcome has been documented in 
previous studies, in both terrestrial and aquatic habitats, which inves-
tigated the role of diversity in absorbing and countering detrimental 
effects deriving from environmental change pulses (Ghedini et al., 2015; 
Ettinger et al., 2019). What is less well understood is that when we 
measured metabolic rates after a one time shot (i.e., a pulse due to a heat 
wave event) or when we measured metabolic rates in patches that 
usually live under chronic conditions of organic sewage pollution (i.e., 
eutrophication), the metabolic community response becomes more 
complex. Indeed, when one pulsing stressor (e.g., a heat wave) exerted 
its effect in parallel with the one generated by chronic sewage effluents 
(sensu Gunderson et al., 2016), the benefits deriving from canopy 
enhancing biodiversity complex appeared to be weakened - demon-
strated by the tendency for metabolic flattening. While such findings 
need further testing (e.g., on more marine system models, across more 
geographic areas), we can infer that the effect of chronic stressors 
appeared to diminish the metabolic response capacity, reducing the 
community's ability to maintain metabolic equilibriums. 

We know that each stressor, depending on its nature (biotic, abiotic, 
chemical or physical), can exert different multilevel effects (Harley 
et al., 2006; Suding et al., 2008; Doney et al., 2012; Mills et al., 2013; 
Connell et al., 2018; Sarà et al., 2018). However, this is more often 
conceptualized rather than measured in practice, as not many datasets 
comparing stressor effects on the same response variable are available 
(sensu Ettinger et al., 2019). Given that community response is the sum 
of responses of all individuals belonging to the species composing the 
community (Loreau, 2010; Worm and Tittensor, 2018), if a system lost 
its metabolic equilibrium, the stressor effect is exerted on all individuals 
of most species within the community. Unfortunately, this study may 
have some experimental limitations since we did not measure the 
stressor effect along a gradient of species richness. Yet it is still possible 
to derive interesting insights on how canopy forest can successfully 
alleviate the effect of pulsing climatic stressors on intertidal commun-
ity's metabolism and raises questions on the potential role played by 
associated canopy biodiversity in this buffering function. Indeed, a 
system exposed to non-climatic anthropogenic stressors is potentially 
more vulnerable when exposed to climatic stressors, as such, under-
standing detrimental functioning thresholds warrants further investi-
gation (sensu Cardinale et al., 2012). 

While global climate change is a well-ascertained fact (Prober et al., 
2019), this current work corroborates the idea that ecological responses 
are - in the end - driven mostly by the local context and the stressors 
properties which are acting at the local level. As such, efforts to manage 
disturbances should include information not only on the scale of the 
impact (both temporal and spatial; Post, 2019), but also measures of 
disturbance typology and properties (Crain et al., 2008). Restoration 
measures, such as canopy transplanting that facilitates the local persis-
tence or adaptation of biodiversity, are useful but they only represent a 
small part of the solution. In fact, the role of scientists, practitioners and 
managers continues to be more challenging as they must explore new or 
more complex frameworks and options that consider the interactive 

effects of global and local anthropogenic stressors. They will need to 
focus more on designing tailored local actions to alleviate the effects of 
non-climatic anthropogenic stressors and assist highly valued species or 
ecosystems to withstand climate stress (e.g., heat waves; Prober et al., 
2019). Increasing the resilience and the adaptability of native species (e. 
g., the Ericaria-Cystoseira canopy complex considered in this study) 
through early warning actions, based on site-focused measures (e.g., 
nutrient/organic sewage reduction) when extreme events (e.g., heat 
waves, cold snaps, rainfall, etc.) are expected to occur are possible “key, 
low-regret approaches” (Prober et al., 2019). These approaches could 
help prevent biodiversity loss, safeguard ecosystem functioning (Baron 
et al., 2009; Stein et al., 2013) and allow the correct and rigorous 
attribution of biological and ecological responses to disturbance prop-
erties (Van de Pol et al., 2017). 
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