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a  b  s  t  r  a  c  t

The  spatial–temporal  scales  on  which  environmental  observations  are  made  can  significantly  affect  our
perceptions  of  ecological  patterns  in  nature.  Understanding  potential  mismatches  between  environmen-
tal  data  used  as inputs  to  predictive  models,  and  the  forecasts  of ecological  responses  that  these  models
generate  are particularly  difficult  when  predicting  responses  to climate  change  since  the  assumption  of
model  stationarity  in  time  cannot  be  tested.  In the  last  four  decades,  increases  in computational  capacity
(by  a factor  of a  million),  and  the  evolution  of new  modeling  tools,  have  permitted  a  corresponding
increase  in  model  complexity,  in  the  length  of the simulations,  and  in spatial–temporal  resolution.  Never-
theless,  many  predictions  of  responses  such  as  shifts  in range  boundaries  are  often  based  on  coarse  spatial
and  temporal  data,  for example  monthly  or yearly  averages.  Here  we model  the  effects  of  environmental
change  on  the  physiological  response  of an  ecologically  and  commercially  important  species  of  mussel,
the  fitness  of which  can  have  a cascading  influence  on  ecosystem  levels.  Using  a  Dynamic  Energy  Budget
(DEB)  model  integrated  with  climatic  data  produced  from  IPCC-A1B  scenarios,  we investigated  the  effect
of  temporal  resolution  of  physical  data on  predictions  of  the  growth  and reproductive  output  of  the  mus-
sel  Mytilus  galloprovincialis.  We  ran  models  using  five  different  temporal  scales,  6,  4,  3,  2  and  1 h  (derived
by  interpolating  between  6 h  points),  at 5  Italian  locations  in the Central  Mediterranean  Sea,  for  the
period  ranging  from  2006  to  2009.  Results  from  these  models  were  further  compared  against  the  results
from  a DEB  model  that used  hourly  environmental  data  recorded  at the  five  locations  as  inputs.  Model
outputs  included  estimates  of life  history  traits  relevant  to ecological  performance  as  well  as parameters
related  to Darwinian  fitness.  Results  showed  that predictions  of  maximum  theoretical  shell  length  were
similar  regardless  of  which  source  of  environmental  data  was  used.  However,  while  the  DEB model
using  1-h  modeled  data  produced  predictions  of reproductive  output  very  similar  to  those  obtained
using  recorded  (hourly)  environmental  data  from  the  same  time  period,  results  using  coarser  resolution
modeled  data  greatly  underestimated  reproductive  output.  Thus,  the  use  of  modeled  weather  data  can
yield  predictions  similar  to  those  generated  from  measured  data,  but only  when  data  are  provided  at
relatively  high  frequency.  Our  results  suggest  that  metrics  of  model  skill  can  diverge  significantly  when
physical  outputs  of climate  models  are  applied  to biological  questions,  and  that  the  temporal  resolution
of  environmental  data  can strongly  alter  predictions  of  biological  responses  to environmental  change.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The temporal and spatial scales over which ecological processes
operate are thought to be tightly linked to the intrinsic complex-
ity of the system itself (e.g., Mislan and Wethey, 2011; Wernberg
et al., 2012). Considerable research has thus focused on the need to
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study ecological processes under different spatio-temporal scales
of observation (Broitman et al., 2008; Wiens, 1996), and has empha-
sized that spatial heterogeneity in the environment at smaller
scales can have cascading impacts on ecological interactions oper-
ating at much larger scales, and vice versa (Denny et al., 2006;
Menge et al., 2011). Surprisingly, while considerable discussion and
debate still exist as to the importance of spatial heterogeneity in
physical drivers on ecological processes (e.g. Burrows et al., 2009;
Denny et al., 2011; Hallett et al., 2004; Wiens, 1996), there has been
less of a focus on the potential role of high frequency temporal vari-
ability (but see Benedetti-Cecchi, 2003; Denny et al., 2011; Kearney
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et al., 2012). Several studies have argued that the use of monthly or
annual means for predictions of niche dimensions and thus distri-
bution limits may  miss important drivers that occur over shorter
temporal scales, for example when temporal averaging removes
rare but extreme lethal events (e.g., Jentsch et al., 2007). Studies
have also suggested that temporal averaging can affect our predic-
tions of sublethal responses such as growth and reproduction. For
example, Kearney et al. (2012) modeled physiological responses of
lizards and showed that predicted growth and reproductive output
varied depending on whether environmental inputs were derived
from daily or monthly data. Denny et al. (2009) have argued simi-
larly for the importance of considering the temporal patterning of
environmental conditions, and especially the return time of phys-
iologically stressful events. A rectification of processes that occur
at the scale of organisms, and the long-term, cumulative effects
of these organismal responses on communities and ecosystems,
remains one of the biggest challenges facing climate change biolo-
gists today (Denny and Helmuth, 2009).

The predicted global warming SRE (Special Report Emissions)
scenarios provided by the International Panel on Climate Change
(most recently, IPCC, 2007) have represented the core of virtu-
ally all studies carried out in climate science and global ecology
of the last decade, and have been used to forecast significant
(and often detrimental) effects of climate change on natural and
human-managed ecosystems, and on the ecosystem services that
they provide (Hickler et al., 2012; Mumby  et al., 2011; Schweiger
et al., 2012). A host of studies have been conducted comparing
physiological responses under current conditions, against those in
which temperatures are increased by ∼2–5 ◦C, and are intended
to reflect conditions in a warmer world. However, as emphasized
by Stenseth et al. (2002), organisms are affected not by climate
(long-term trends in weather), but rather by weather (short-term
changes) that is “trained” by climate. That is to say, the most
relevant effect of climate on organisms may  not lie in low fre-
quency changes in mean conditions, per se, but rather by how
patterns of weather are affected, and how these altered condi-
tions in turn affect organisms (Jentsch et al., 2007). Long-term
trends in weather (climate) thus ultimately cause effects at eco-
logical scales because of the cumulative effects of weather on
individual organisms, but effective prediction requires that we
include (or at least eliminate) any potential influences of higher
frequency variability that overlies long-term trends. As a result,
an emerging number of studies have explored how environmental
“signals” are translated into physiological responses by capturing
fine-grained differences in the metabolic processes of organisms
through an entire life cycle (e.g. Denny et al., 2006; Helmuth et al.,
2010). Still, there remains a major conceptual gap between stud-
ies conducted at physiological scales and those conducted over
large geographic or long temporal scales. Put simply, we do not
necessarily know what comprises “signal” and what is simply
“noise”.

1.1. Thermal physiology

Almost  all physiological responses are sensitive to tempera-
ture, and the simplest and most frequently used methods for
quantifying the relationship between body temperature (BT) and
fitness is with a thermal performance curve. A key feature of most
performance curves is that they are highly nonlinear. The BT of
ectotherms, like most aquatic invertebrates such as bivalves, is
driven by the external environment (Lima et al., 2011); in subti-
dal animals (i.e., always immersed) the body temperature is thus
very similar to the temperature of the surrounding water. In some
environments water temperature (and hence body temperature)
may change slowly, for example over seasonal cycles. Importantly,
however, recent studies have shown that such assumptions are

not  always correct. Nearshore water temperature (and hence body
temperature) can exhibit significant hourly fluctuations (several
◦C) due to the influence of surface heating from solar radia-
tion, upwelling, or internal wave formation (Leichter et al., 2006;
Pfister et al., 2007). Variability in BT in terrestrial and intertidal
environments during low tide can be much more extreme, with
changes of 20 ◦C occurring over a matter of hours. Subsequently,
basing estimates of physiological performance on average con-
ditions is therefore very risky, because the relationship between
BT and performance can be highly nonlinear. During the nor-
mal course of a day for many organisms, their performance will
shift with environmental conditions (move along the thermal per-
formance curve) so that relatively small changes in temperature
can lead to large changes in performance. Thus, for example,
estimates of physiological responses in an animal with a BT fluc-
tuating between 10 and 20 ◦C may  not be accurately reflected by
performance measured at an average temperature of 15 ◦C. This
central thesis suggests that by temporally averaging the drivers
of BT, we  may be inadvertently biasing the true physiological
responses to fluctuating conditions that normally occur in many
environments. Quantifying these differences requires an integra-
tive approach that can account not only for rapid changes in
physiological performance, but also in the time history of perfor-
mance.

Whereas the accurate prediction of weather patterns on any
particular day at any appreciable time in the future is impossible,
climate models can reproduce a coherent chronology (i.e., at 6-h
intervals) which represents a possible evolution of the Earth sys-
tem and thus can effectively overlay “weather” on top of climatic
trends. We  tested the effect of temporal resolution on correlates
of fitness of the Mediterranean blue mussel, Mytilus galloprovin-
cialis (Kearney et al., 2011; Sarà et al., 2011). M. galloprovincialis,
native to the Mediterranean, is listed among the 100 of the World’s
Worst Invasive Alien Species and is a dominant space occupier and
structuring species in many rocky shores. It is also an important
aquaculture species (Sarà et al., 2012) and worldwide this genus of
mussels is worth approximately USD 0.106 billion in annual har-
vest (DAFF, 2012). Combining a mechanistic approach based on the
Dynamic Energy Budget model (DEB; Kooijman, 2010) and sea-
water temperatures projected by the PROTHEUS climate coupled
model (Artale et al., 2010), specifically developed for the Mediter-
ranean Sea under an A1B scenario (Carillo et al., 2012; Dell’Aquila
et al., 2011), we examined how two temporal scales of output from
a climatic model – two  models with the same accuracy (skill) when
based on comparisons of physical environmental data – may result
in different expressions of model skill when evaluated using phys-
iological metrics.

2.  Materials and methods

Mechanistic  (process-based) predictive models such as DEB the-
ory (Kooijman, 2010) represent a potentially valuable and reliable
tool for studying physiological and ecological responses in the
context of climate change, particularly when coupled with mea-
surements of the physical environment at appropriate spatial and
temporal scales (Kearney et al., 2012; Sarà et al., 2011, 2012, 2013a,
2014). A major advantage of these models is their ability to pre-
dict not only patterns of mortality, but also sub-lethal responses
such as changes in growth, maximum size, and reproductive out-
put. In these models, all aspects of organismal metabolic machinery
are generally rate-based, implying that all predictions of organis-
mal processes will be a direct function of physiological rates; i.e.
they are not dimensionless (sensu Kooijman, 2010). DEB is able to
quantify the principal life history traits (e.g. size, time to puberty
and number of eggs) as a function of the real amount of energy
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available in the food and the current (or predicted through climate
scenarios) body temperature. Through this approach, it is possi-
ble to provide accurate predictions of life history characteristics
of organisms within the context of the microclimate where they
really live. Using the mussel M.  galloprovincialis as a model species,
we first compared the output of a DEB model using data recorded
in situ by buoys to that generated using model A1B predictions
(hindcasts) at the same temporal resolution (created by interpola-
tion between 6-h data points outputted by the model). Once the
similarity of output between these two models was  verified, we
compared the model outcomes from five different temporal scales
(6, 4, 3, 2 and 1 h) using the A1B dataset only.

3.  Theory

3.1. Dynamic Energy Budget (DEB) theory and parameters

DEB captures the whole-organism bioenergetics connecting
individual behaviors to population growth (Kooijman, 2010). The
most important factors driving the metabolic machinery in orga-
nisms are food and body temperature. Only a few concepts
are needed to explain the mechanistic nature of a DEB model
(Kooijman, 2010): (1) energy and matter assimilated from food
are assumed to be proportional to the organisms’ surface area fol-
lowing a type II functional response (Holling, 1959); (2) they are
directed to a reserve (e.g., fat, protein); (3) the reserve flux is mobi-
lized according to the !-rule (i.e., a fixed fraction (!) is allocated to
growth and somatic maintenance while the remaining 1 − ! is allo-
cated to maturity maintenance, maturation or reproduction); (4)
maintenance has priority over growth and growth ceases when all
reserves are used for somatic maintenance (Fig. 1). Before running
the DEB model, we needed to obtain functioning parameters of the
target species by integrating experimental and mathematical pro-
cedures. In this case, M.  galloprovincialis parameters were obtained
experimentally or from the literature (Sarà et al., 2012, 2011).

3.2.  Study area, and environmental parameters

A major strength of DEB theory is an ability to track the dynamics
of development, growth and reproduction as an explicit func-
tion of temperature and food availability (Kearney and Porter,
2006; Kearney et al., 2011; Sarà et al., 2013a,b). DEB models
were run by inputting these variables as forcing drivers of life
history of mussels throughout the central Mediterranean Sea
(Fig. 2). In particular, we performed DEB simulations using food
and water temperature datasets from 5 sites around the Ital-
ian Peninsula, from the northernmost Gulf of Tigullio (LAT ∼44◦;
LONG ∼9◦) up to the southernmost Sicilian Strait (LAT ∼35◦;
Lampedusa) to the eastern part of the Adriatic Sea (LONG ∼19◦).
We ran DEB models simulating subtidal conditions as previously
done in Sarà et al. (2011, 2012, 2013a,b), thus assuming that BT
approximated seawater temperature (Lima et al., 2011). Models
were run with seawater temperatures (01/01/2006–31/12/2009)
for  5 Italian locations of the Central Mediterranean Sea (Lampe-
dusa, Palermo, Bari, Genova and Trieste; Fig. 2), at five different
time scales. Hourly seawater temperature measurements were
obtained from buoys maintained by the Italian Institute of Environ-
mental Research (ISPRA; http://www.mareografico.it/; buoys are
located  close to harbor areas of each site, far less than few Km
from areas over which we run IPCC scenarios). Modeled seawa-
ter temperatures were obtained from PROTHEUS. In running DEB
models, we used a DEB model subroutine developed by Kearney
(2012) for which structural volume, reserve density and reserve
allocated to reproduction can be estimate every hour, as long
as the body temperature estimates and the thermal constraints

Fig. 1. Schematic representation of a standard DEB model (Kooijman, 2010) describ-
ing the fluxes of energy through an organism coming from the environment. The
“Upper part” deals with feeding process that describes how energy coming from
food is stored as metabolites (e.g. stored proteins, lipids, carbohydrates); Middle
part:  reserve in which the energy is first stored then made available for direct
use following the !-rule; Lower part: energy coming from reserve is allocated to
maintenance and transformed into structure (i.e. growth) and offspring (i.e. repro-
duction). *indicates physiological parameters modified according to the different
time-scale  models; JX = maximum ingestion rate, J h−1, pM = somatic maintenance
costs,  J h−1(from Sarà et al., 2014).

of activity periods (i.e. physiological performances) are known.
Because the DEB model as it was  conceived was based on hourly
rates, to adapt the DEB routine (Kearney, 2012; Kearney et al.,
2012) to the different time-scale datasets, we adjusted two phys-
iological parameters responsible for the net budget of energy
available to organisms: ingestion rates and the somatic mainte-
nance costs.

In  a DEB context, the maximum surface area-specific inges-
tion rate (the DEB parameter called {jxm}) can be estimated by
using the following formula: {jxm} = JX/(fV2/3), where JX is the max-
imum ingestion rate (J h−1), f is the scaled functional response
(dimensionless, ranging from 0 − 1) and V (cm3) is the structural
body volume expressed as the cube of the shape coefficient and
the organism’s shell length. Volume-specific somatic maintenance
costs (the DEB parameter called [ṗM]) are usually estimated by scal-
ing the amount of energy needed to fuel basal metabolism (ṗM) with
the organisms’ volume, such as [ṗM] = pM/V ; in order to include
the effect of body temperature on individuals physiological per-
formance, for both parameters the same temperature correction
factor was  applied, i.e. through the Arrhenius relationship (e.g. see
Kooijman, 2010; Sarà et al., 2013a).

These parameters are usually estimated on an hourly basis and
in this study were converted from a per hour to a 2, 3, 4 and 6 h basis
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Fig. 2. Map  reporting all sites considered in this study; Occ = ascertained presence [Y] or absence [N] through literature (Sarà et al., 2014).

by simply multiplying parameters obtained on an hourly basis by a
corresponding factor of two, three, four and six, respectively; this
strategy allowed us to use the same model to compare outputs from
input data at several temporal resolutions without changing any
other parameters. Modeled temperature outputs were originally
performed on a 6 h basis with a total of 4 points per day (00:00,
06:00, 12:00 and 18:00). Since the main goal of this work was
to compare the effects of adoption of different temporal scales on
predictions of bivalve fitness, we performed a linear interpolation
of temperature data to obtain hourly data from the 6 h estimates.
Accordingly, we expanded the dataset from 6 to 1 h scale (i.e., from
4 to 24 points per day) starting from the original 6 h data source,
and then used the hourly estimates as described above. Interpola-
tions were performed by employing the ZOO package (Z’s Ordered
Observations) included in the R statistical software available at
http://www.r-project.org/. In addition to temperature, DEB models
also  require available food levels as inputs. Adopting an approach
similar to that of several other recent DEB studies (Kearney et al.,
2011; Sarà et al., 2013a, 2013b, 2012, 2011) of bivalves, we used

chlorophyll-a  (chl-a) from satellite imagery to estimate food den-
sity available to suspension feeders. Monthly data for chl-a (!g L−1)
were obtained from January 1998 to December 2007 (i.e., 120 point-
months) from the EMIS website (http://emis.jrc.ec.europa.eu). We
downloaded data from a horizontal grid spacing of 30 km pos-
itioned on the sea around every ISPRA oceanographic station. Areas
were ∼10 km from the coast to avoid the interference of reflectance
due to the presence of the landmass. Notably, we recognized that
varying the temporal resolution of available food could potentially
have effects akin to those of varying temperature. However, we
held food relatively constant in order to independently examine
the effects of temporal variability in temperature. Simulations were
run for 4 years, which is considered the mean life span for M.
galloprovincialis at each location under subtidal conditions. Model
outputs included: (i) the maximum theoretical total shell length
(TL, cm)  reached by mussels at 48 months from settlement, (ii) mat-
uration time (days), (iii) the number of reproductive events (RE, n)
throughout the simulated 4-year period and (iv) total reproductive
output (TRO, n) i.e., the number of eggs produced per biomass unit
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(dry weight) throughout 4 years. In two cases model outputs pre-
dicted the absence of mussels due to complete reproductive failure
(as in Sarà et al., 2013b, 2011). We  therefore adopted the method
described by Buckley et al. (2010) and Manel et al. (2001), com-
paring presence and absence of animals predicted by the model
to observations in the field. We  estimated the sensitivity index
(% proportion of true presences correctly predicted throughout
the 5 study sites) and the specificity index (%, proportion of true
absences correctly predicted throughout the 5 sites of this study).
Model performance (% true) was tested combining the first two
metrics by calculating the percentage of all cases that were cor-
rectly predicted (true presences plus true absences divided by total
cases).

4. Results

Outcomes of our simulations showed differences in life history
traits and fitness of M.  galloprovincialis throughout the study area
when predicted using buoy data (Table 1) and with model data at
the five different temporal scales (Table 1). Results suggested no
remarkable differences between model outputs generated using
buoy data and the hourly A1B dataset. All five model outputs pre-
dicted the presence of mussels at 3 out of 5 sites, i.e., in Bari,
Genova and Trieste (Table 1). In these sites, mussels usually reached
larger sizes. At the other two sites, while mussels were predicted to
grow to small size, a complete reproductive failure was predicted
(see below). Models using either hourly data or multiples were
highly consistent with results generated using water temperature
data in estimating the total length everywhere throughout the
study area. For example, in Lampedusa, models estimated approx-
imately the same total length (ranging from 1.36 to 1.47 cm)  and
in Trieste, Genova and Bari there was a negligible difference (an
average of 0.5 cm in four years as estimated on 1 and 6 h basis,
respectively). In contrast, remarkable differences were found in
predictions of metrics of reproductive output such as number of
reproductive events, total number of eggs and time to reach the
puberty depending on the input dataset used (Table 1). The num-
ber of reproductive events was substantially underestimated by
the 4 h and the 6 h models as compared to the 2 h and to the
other two, 1 h models at the sites where the mussel was pre-
dicted to be present (Bari, Genova and Trieste). Indeed the use of
coarser resolutions (i.e. 4 and 6 h) returned a number of repro-
ductive events about 60% less than those predicted at 1 h basis
using either A1B or measured buoy temperatures, respectively
(Table 1).

The  total number of eggs followed the same pattern in that
both the 4 and 6 h models predicted a total lifetime production
of 9606 and 474,784 eggs in Genova and Trieste, respectively com-
pared to 36,000 and 2,420,000 eggs as predicted using the 1 h data.
In addition for those sites, the amount of eggs produced per life
span differed even when 2 and 3 h models were used; indeed the
total production in Bari, Genova and Trieste, was estimated about
560,000 (2 h model) and 428,000 (3 h model) compared to over
860,000 eggs predicted using 1 h input data (on average 35 and
50% less; Table 1).

None  of the models predicted the presence of Mytilus in
Lampedusa and Palermo due to reproductive failure. This result
was consistent with an observed absence of mussels from these
sites, and with the time to reach puberty as estimated on 1-
h basis (∼1400 days, or ∼4 years which means that mussels
should never reproduce in 4 years thus preventing stable pop-
ulations from forming). In contrast, the time to reach puberty
predicted by the models built using different temporal resolution
data was faster than that predicted by either of the hourly models
(Table 1).

5. Discussion

The application of a mechanistic approach based on eco-
physiological bioenergetic models allowed us to explore the
influence of temporal resolution of climatic data on predictions of
growth performance and fitness in bivalves. At all scales of simu-
lations adopted here (from 1 to 6 h), the mechanistic model was
able to confidently predict (100% according to our sensitivity anal-
ysis; Manel et al., 2001) the likelihood of species occurrence in the
central and northern Italian sites (Bari, Genova and Trieste). Here,
environmental conditions, as expressed by temperature and food
density, are very likely to allow this species to persist over time.
This is supported by the massive presence of shellfish farms in
those areas, which are the primary areas of Mytilus cultivation in
the Mediterranean Sea with almost 40,000 t of commercial mussels
produced per year (FAO, 2000). The models were also able to specif-
ically predict the absence of mussels at southern latitudes such
as Palermo and Lampedusa, which corresponded to field observa-
tions (Sarà et al., 2011). Our results strongly suggest that at the
sites examined the scale of input data had little effect on coarse
predictions of presence and absence (e.g. reproductive vs non-
reproductive populations), at least when comparing predictions
made using different temporal resolution data. However, identify-
ing the correct scale was  critical for disentangling the reproductive
dynamics of M. galloprovincialis, which may  in turn have significant
impacts at higher ecological levels, and may  have long-term con-
sequences for population growth and viability. Moreover, the sites
explored here represented an extreme range of habitat suitabil-
ity. It is therefore perhaps not surprising that all models predicted
absence due to reproductive failure at low food sites. Identifying
correct scales may  be critical at sites where conditions of food, tem-
perature or other environmental variables change from optimal to
suboptimal.

In some cases, therefore, it could be argued that “getting the
details right” in terms of growth and reproduction may  be unim-
portant, if the focus is on lethal conditions that set ranges. This
assumption however belies the observation that not all range edges
are set by the same mechanism, in either space or time. For exam-
ple, Woodin et al. (2013) argue that while lethal limits serve as
effective indicators of where Mytilus live on the east coast of North
America, it does not work when the same model is applied to
Europe. Here, they argue, limits are more likely set by longer-term
physiological stress. Nevertheless, to fully understand the poten-
tial of the mechanistic approach, as suggested in a recent review
by Monaco and Helmuth (2011), we must be able to correlate local
environmental variability to individual sub-lethal responses (e.g.
growth and reproductive reduction). Such a framework may be crit-
ical for forecasting ecosystem-level responses to climate change,
especially when examining structuring species, keystone species
and ecosystem engineers (Violle et al., 2012). Specifically, such
predictions may  be crucial when attempting to anticipate rapid
phase shifts (tipping points) which can likely occur even in the
absence of large changes in the environment due to nonlineari-
ties in how organisms are affected by physical processes (Monaco
and Helmuth, 2011). In a broader context for example, the abil-
ity to mechanistically provide estimates of commercial body size
in animals such as M. galloprovincialis, would be a vital tool for
the optimizing shellfish production (Sarà et al., 2012). From our
distribution map based on DEB modeling, we could identify more
suitable areas where mussels may  reach larger body sizes in Italian
sectors of the Mediterranean Sea, and thus provide guidance as to
where to launch more profitable economic investments in aqua-
culture (sensu Sarà et al., 2012). This could also have important
ecological implications, since aquaculture is considered the best
candidate globally to reduce the ecological impact of artisanal fish-
ery and promote the reversion of eutrophication effects, restoring
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Table  1
Main  outcomes obtained from DEB models using current buoy hourly data (ISPRA) and five different temporal resolution input data derived using an IPCC-A1B scenario
throughout the Italian locations.

LT MT  # eggs RE LT MT # eggs RE

Trieste Genova
Current ISPRA 6.73 316 1,837,054 9 2.52 821 27,700 6
IPCC-A1B  1 h 7.15 300 2,426,425 9 2.56 803 36,151 7
IPCC-A1B  2 h 7.15 150 2,123,408 7 2.60 402 24,923 6
IPCC-A1B  3 h 7.16 100 1,606,856 5 2.60 268 18,800 4
IPCC-A1B  4 h 7.15 75 1,339,391 4 2.60 201 18,797 3
IPCC-A1B  6 h 7.26 50 474,784 2 2.76 130 9,606 2

Bari  Palermo
Current ISPRA 3.28 703 88,102 6 1.63 1421 0 0
IPCC-A1B  1 h 3.53 665 118,961 7 1.68 1421 0 0
IPCC-A1B  2 h 3.53 332 92,145 6 1.68 711 0 0
IPCC-A1B  3 h 3.53 222 88,071 5 1.68 474 0 0
IPCC-A1B  4 h 3.53 166 55,465 4 1.68 356 0 0
IPCC-A1B  6 h 2.71 136 13,789 3 1.58 243 0 0

Lampedusa
Current ISPRA 1.47 1383 0 0
IPCC-A1B 1 h 1.47 1383 0 0
IPCC-A1B 2 h 1.47 692 0 0
IPCC-A1B 3 h 1.47 462 0 0
IPCC-A1B 4 h 1.47 346 0 0
IPCC-A1B 6 h 1.36 243 0 0

LT = Total shell length after 4 years, cm;  MT  = Maturation time, days; # eggs = total number of eggs produced by a single individual per life span; RE = Number of reproductive
events in 4 years.

water quality in degraded estuaries, ponds and lagoons (Jackson
et al., 2001).

Individual life history traits are the key-aspects to be investi-
gated for the understanding of ecological processes at the upper
levels of ecosystems (Miller et al., 2011; Violle et al., 2012). Here,
our mechanistic model was able to accurately work at different
temporal scales adopted to describe life history traits of our mus-
sels. Model fallacy was nearly nil in dealing with predictions of
total length maximally reachable under every local condition (i.e.,
the Von Bertalanffy infinite length), throughout the study area.
Only a very small deviation across all models tested was  observed,
when considered on an annual basis. The confidence of models in
correctly assessing the importance of various functional traits of
organisms, offers opportunities probably never imagined only ten
years ago in studying the growth performance of ectotherms. The
similarity in predictions of maximum body size between all three
models suggests that these observed differences in predicted repro-
duction are truly the result of differences in the temporal resolution
of the input data, and not an artefact of the modeling design. Indeed,
in studying the reproductive outputs, we showed that all three
main reproductive estimates (number of reproductive events, time
of maturation and total number of eggs) resulted underestimated
as much as the temporal resolution is coarser. Our results suggest
that even minor temporal averaging can have significant impacts
on predictions of reproduction, likely because of the nonlinearities
inherent in the species thermal performance curve.

We  expect that the use of temporal averaging over even
broader scales (e.g. monthly or seasonally) would lead to even
greater mismatches between environmental drivers and physi-
ological responses (Potter et al., 2013). Such a result is similar
to what has previously been shown in terrestrial environments
(Reynolds-Hogland and Mitchell, 2007; Dillon et al., 2010; Mislan
and Wethey, 2011; Kearney et al., 2012) where it was demonstrated
that reproductive output is the life history trait most affected
by the application of data at an incorrect temporal scale. Such
a fact relies on assumptions of the DEB model that explain the
interactive effects of temperature and food availability on fecun-
dity (Kooijman, 2010; Jager, 2012), such as the possibility that
by using coarser-resolution data, the model does not accurately
capture reserve dynamics. In other words, while growth describes

continuous  processes that necessarily tend to reach an asymptote
within the same species (i.e. the individual maximum habitat size;
Sarà et al., 2013a) under the same environmental conditions, repro-
ductive events are estimated to occur when a certain threshold and
environmental triggers take place (e.g. Kooijman, 2010). The use of
coarser resolution input data may  have failed in adequately meet-
ing reserve dynamics, probably filling it above this critical threshold
(Kearney, 2012). Thus, increasing temporal resolution may  increase
the likelihood of capturing instances when the reserve is empty,
i.e. the number of reserve depletion events = reproductive events
(spawning). In addition, as suggested by Kearney et al. (2012),
the adoption of incorrect temporal scales in predicting the future
effect of climate drivers, could have a major effect on all species
with limited ability to thermoregulate, such as the bivalves exam-
ined here. Ectotherms represent more than 90% of the life on the
Earth, and any underestimation of thermal effect on their metabolic
machinery and life cycle could lead to incorrect future predictions
dealing with the biodiversity. Thus in a context of climate changes
studies, identifying the necessary optimal resolution will require
serious effort on several fronts to increase our understanding of
how organisms will respond to environmental change (e.g. Potter
et al., 2013); a lack of sufficient knowledge regarding sublethal
responses to climate change could thus potentially be the Achilles
heel of current research aimed at studying the likely effects of future
climatic scenarios on ecological responses (sensu Kearney et al.,
2012).

An important consideration, and one that has not been
addressed here, is whether frequency distributions of climatic
drivers alone are sufficient to predict physiological response, or
whether the effects of time history (i.e. the return time of phys-
iologically stressful but nonlethal events) play an important role
(Denny and Helmuth, 2009; Denny et al., 2009; Kearney et al.,
2012). Thus, for example, an extreme (“stressful”) day followed
by several mild (“unstressful”) days may  have different physio-
logical implications than a period of repeated extreme events, or
long periods of moderate stress (Kearney et al., 2012). Future stud-
ies of such interactions are therefore critical (Denny and Helmuth,
2009). Mechanistic models appear to be perhaps the best tool that
the ecological community has in hand to provide accurate predic-
tions of ecological responses in a changing world. Models let us
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put the information that we have together in a rational, orderly
way to make predictions about the future; as an alternative, “with-
out them, all we can do is guess” (ad litteram Donald De Angelis in
Pennisi, 2012).
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