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Abstract
Water temperature directly affects life cycles, reproductive periods, andmetabolism of organisms living the oceans, especially in
the surface zones. Due to the ocean warming, changes in water stratification and primary productivity are affecting trophic
chains in sensitive world areas, such as the Mediterranean Sea. Benthic and pelagic cnidarians exhibit complex responses to
climatic conditions. For example, the structure and phenology of the Mediterranean hydrozoan community displayed marked
changes in species composition, bathymetric distribution, and reproductive timing over the last decades. The regional species
pool remained stable in terms of species numbers but not in terms of species identity. When the Scyphozoa group is considered,
we observe that Pelagia noctiluca (among the most abundant jellyfish in the Mediterranean Sea and eastern Atlantic waters) has
increasingly frequent massive outbreaks associated to warmer winters. Variations in metabolic activities, such as respiration and
excretion, are strongly temperature-dependent, with direct increment of energetic costs with jellyfish size and temperature,
leading to growth rate reduction. Water temperature affects sexual reproduction through changes in the energy storage and
gonad development cycles. Anthozoan life cycles depend also on primary productivity and temperature: gonadal production
and spawning are tightly related in shallow populations (0–30 m depth) with the spring-summer temperature trends and
autumn food availability. Overall, the energy transferred from the mother colonies to the offspring may decrease, negatively
affecting their potential to settle, metamorphose and feed during the first months of their lives, eventually impairing the
dominance of long-living cnidarian suspension feeders in shallow benthic habitats. In this review, we describe the already
ongoing effects of sea warming on several features of cnidarian reproduction, trying to elucidate how reproductive traits and
potential dispersion will be affected by the cascade effects of increasing temperature in the Mediterranean Sea.
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Introduction

Fast temperature increase in the Mediterranean Sea
waters has been crucial to understand pelagic and
benthic community changes (Garrabou et al. 2009;
Crisci et al. 2011). Despite slower, the velocity of
climate change and seasonal shift in the oceans are
as high as on land and often deviate from simple
expectations of poleward migration and earlier

springs/later falls (Burrows et al. 2011). These com-
munity shifts, now evident all around the World, are
even faster in this warm temperate sea (Shaltout &
Omstedt 2014). The phenomena related to warming
will increase faster in this area of the world because
of the limited water masses and the related circula-
tion that is previewed to change during the next
decades (Galli et al. 2017). In fact, temperature
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raise in surface waters has been around 0.24°C
decade-1 in the west of the Strait of Gibraltar and
0.51°C decade-1 over the Black Sea (Shaltout &
Omstedt 2014), being also the deep waters affected
by the warming phenomenon (0.1–0.27ºC decade-1,
García-Martínez et al. 2017).
The Mediterranean basin has a high rate of species

endemism (28% of species are endemic), which may
be predisposed to local extinction in such a fast-
changing environment (Boero & Gravili 2013;
Gravili et al. 2015a; Galli et al. 2017;
García-Martínez et al. 2017). Several studies started
focusing on the community and species repercussions
of such warming tendency in this semi-closed area
(Calvo et al. 2011; Goffredo & Dubinsky 2014). For
example, studies of Lejeusne et al. (2010), focused on
the effects of climate change on the Mediterranean
biota, concluded that warming of water masses affects
the marine ecosystems, being complex to distinguish
the effects of the local anthropic activities from those
due to natural events. Almost two decades ago, it was
already highlighted that the spread of alien species and
its fast distribution northwards and from the east to
the west may be due to the fact that some temperature
physical barriers are weaker (Bianchi & Morri 2000).
Actually, the progressive warming of the
Mediterranean shallow waters is influencing the deli-
cate coexistence of boreal, temperate, sub-tropical and
tropical species (Moschella 2008; Corriero et al. 2015;
Longobardi et al. 2017). Many of these deep environ-
mental changes and its repercussions on single species
or whole ecosystem functioning have been high-
lighted, such as the more frequent occurrence of
harmful algal blooms (Mangialajo et al. 2010;
Faimali et al. 2012; Privitera et al. 2012), mass mor-
talities of sponges and anthozoans in shallow waters
(Cerrano et al. 2000; Linares et al. 2005; Garrabou
et al. 2009; Rivetti et al. 2014; Parravicini et al. 2015),
and changes in biodiversity ofMediterranean commu-
nities (Puce et al. 2009; Gatti et al. 2015; Gravili et al.
2015a; Betti et al. 2017a, and references therein).
One of the mechanisms of species adaptation to

global warming is phenology (the synchronous tim-
ing of ecological events) and shifting biogeographic
ranges (Parmesan & Yohe 2003; Thackeray et al.
2010; Burrows et al. 2011). Species phenology,
mainly regulated by temperature and photoperiod
(Hughes 2000; Boero et al. 2016), can provide
a sensitive indicator of climate change (Visser et al.
1998; Bergmann 1999; Crick & Sparks 1999;
Edwards & Richardson 2004, and references
therein). Distribution and phenology are directly
related with the physiology of the affected organ-
isms, which, in turn, is directly influenced by the

temperature increase (Hughes 2000). The suscept-
ibility to global climate change varies according to
their biology and, inevitably, alters the interactions
between species and their competitiveness (Hughes
2000; Harley et al. 2006; Moschella 2008). Yet, the
available information in the Mediterranean area is
still scarce and the future scenarios are still not clear
(Boero et al. 2008b).
In fact, the level of response to climate change,

associated with changes in phenology, may vary
across the community and the seasonal cycle of the
different species, leading to acclimation responses
(i.e. accommodating their cycles of activity to the
new environmental conditions) (Boero et al. 2008a).
Temperature influences the metabolic rates of all
organisms affecting numerous processes at the level
of individuals, populations, and communities
(O’Connor et al. 2007). In-depth study of the spe-
cies response is needed to make a complete map of
future distributions, local extinctions and new rela-
tionships among organisms. It is now clear that
a modest increase in sea surface temperature may
have significant effects on individuals with increas-
ing rates of colony and population growth (Lough &
Barnes 2000; Edmunds et al. 2005), and larval
development (O’Connor et al. 2007). Such meta-
bolic shifts are now happening, and its repercussions
will structure the future ecosystem functioning.
Among these repercussions, reproduction is one

of the most highlighted when trying to understand
shifts in life-cycle trends and potential dispersion of
the species. Reproduction may be considered one of
the keys to understand the distribution and resis-
tance of species in front of such physical changes.
Successful or non-successful reproductive traits will
be one of the most important factors explaining
species presence and geographical shifts (Goffredo
& Dubinsky 2016). Reproduction is related not only
with temperature but also with the available auto-
trophic or heterotrophic inputs (Rossi et al. 2017).
Changes in primary productivity and water stratifi-
cation, due to the water warming, are thus affecting
trophic chains in sensitive world areas, such as the
Mediterranean Sea (Milisenda et al. 2017), inducing
a mismatch between functional groups and trophic
levels (Edwards & Richardson 2004). The
Mediterranean, therefore, is an ideal framework,
because of the accelerating path is present both in
temperature but also in productivity, helping to
visualize what could happen in future scenarios
(Goffredo & Dubinsky 2014).
Understanding the reproductive traits under

a climate change framework will thus help in the
complex puzzle of future distribution and
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survivorship of species (Lartaud et al. 2017). One of
the most important taxonomic groups in terms of
biomass, biodiversity and ecosystem functioning in
the oceans are cnidarians (Goffredo & Dubinsky
2016). Benthic and pelagic cnidarians may be
a very good example to understand the effects of
sea warming and changes in productivity of water
masses. These organisms exhibit composite
responses to climatic conditions. Practically ubiqui-
tous in all aquatic habitats, they are characterized by
high regenerative capacity and considerable ability
to form symbioses with microorganisms (Bosch
et al. 2014; Sun et al. 2016; Schubert et al. 2017).
They are morphologically simple but with complex
gene repertoires able to code much of the sensory
capacity of more complex animals (Technau et al.
2005; Chapman et al. 2010; Srivastava et al. 2010;
Bosch et al. 2014). Many cnidarian species repro-
duce asexually by budding or colony fragmentation,
and early embryos enable clonal propagation capa-
city due to recovery after fragmentation (Heyward &
Negri 2012).
In cnidarian phenology and reproduction, tem-

perature plays a critical role mediating life-cycle
transitions (Bosch et al. 2014): generally, their lar-
vae are motile but most adult stages (except in
medusa) are sessile and, therefore, constantly
exposed to changing environments. Reproduction
may be thus positively or negatively affected by
temperature, reducing or increasing fecundity, egg
quality, fertilization success, and larval survivorship
in this taxonomic group (Baird et al. 2009; Lartaud
et al. 2017; Rossi et al. 2017; see McClanahan et al.
2009 for a review).
The present work considers a series of case studies

in reproductive traits across three cnidarian classes:
Hydrozoa, Scyphozoa, Anthozoa. We focus on the
consequences of the last decades of Mediterranean
warming and review the responses in the phenology
and physiology of organisms with particular regard
to some aspects of their reproductive processes that
can be considered critical for their future in terms of
distribution and adaptation to the new conditions.

Hydrozoa

Together with calcispongiae and colonial ascidians,
hydroids are the most important suspension feeders
group subjected to evident seasonal variations
(Gaino et al. 1996; Gili et al. 1998; Bavestrello
et al. 2006; Rossi et al. 2012). Species belonging to
the Hydrozoa inhabit all aquatic ecosystems and
display a wide array of life-cycle strategies (lateral

budding, budding of frustules, asexual reproduction
by fissiparity, formation of propagules by fragmenta-
tion, encystment, polyp and medusa budding, asex-
ual reproduction of medusae) as well as trans-
differentiation and regeneration phenomena (Boero
et al. 1997, 2002). In these processes, medusa for-
mation from a planula can be viewed as an essen-
tially embryological process interrupted (in its
course) by an intense period of asexual reproduction
through colony formation (Boero 2002).
Furthermore, thermophilous species in favorable
environmental conditions can take advantage of sev-
eral asexual reproduction strategies like the direct
budding of young medusae from marginal tentacular
bulbs (Hyman 1940). The longitudinal division pro-
cess (schizogony) proceeds via the formation of mul-
tiple stomach (polygastry) (Russell 1953) or by
direct fission (Stretch & King 1980). These pro-
cesses involve, when sexual reproduction takes
place, an increase in density of mature medusae
with the production of more widely dispersed sexual
propagules.
It has been observed that Hydrozoa exhibit

extreme sensitivity with respect to seasonal changes.
Interestingly, there is a period in which no active
hydroids are present, being the organism repre-
sented by resting hydrorhizae capable of tolerating
substantial changes in temperature and drying con-
ditions (Gili & Hughes 1995; Boero et al. 2002,
2008b; Bavestrello et al. 2006; Di Camillo et al.
2008 and references therein).
It is also important to highlight the difference

between shallow and deep hydrozoan (and other
organisms) populations. Seasonality of hydrozoan
shallow water species is generally much more pro-
nounced than those at greater depths because of
stronger seasonal differences in temperature of sur-
face coastal waters. The thermocline formation and
differences in available food in summer time due to
a lack of water movement or seston availability (see
below) are one of the keys to understand shallow
Hydrozoa life cycles (Coma et al. 2000). Hydroids
below 20 m in the Mediterranean Sea, in fact, are
characterized by more protracted spawning periods
and longer-lived colonies (Boero 1984; Boero &
Fresi 1986; Gili et al. 1989).
An emblematic case study is the cold-affinity spe-

cies Paracoryne huvei Picard, 1957. This species is
apparently present only in winter months whereas in
the warmer period it forms cysts (Bouillon 1975):
temperature seems to affect only the occurrence and
length of the life cycle of this species while rainfall has
effects on the settlement/development of the colonies
(Betti et al. 2017b). Therefore, its strict stenothermic
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feature and shortened life cycle (due to water warming
and low salinity conditions) seem to make it suitable
as bioindicator of climatic change (Betti et al. 2017b).
Many researchers have considered temperature to

be the main factor responsible for the seasonal
changes in the presence/abundance of different hydro-
zoan species (see papers of Kinne and Werner, listed
in Gili & Hughes 1995). This hypothesis has been
supported by laboratory experiments that have con-
firmed that hydroid colony growth is highest over
a defined temperature range (Fulton 1962; Kinne &
Paffenhöfer 1966; Gili & Hughes 1995). In
Hydrozoa, in fact, temperature has been proved to
play an important role in the processes of develop-
ment and reproduction (see experiments on Coryne
tubulosa (M. Sars, 1835) conducted by Werner 1956,
1958, 1961): The results of these experiments showed
that the internal conditions of metabolism, growth,
and development influence the production of new
stolons and polyps (as well as medusa buds), being
regulated and initiated by temperature changes.
Rathkea octopuntata (M. Sars, 1835) is another exam-
ple of direct effect of temperature, in this case on cell
determination; Werner (1958) showed that tempera-
ture could induce either medusa budding (at tem-
perature <7°C) or gametogenesis (at temperature
>10°C) in specimens collected in the North Sea. In
the Mediterranean, R. octopunctata occurs in its bud-
ding asexual form at temperatures above the 13°C.
Sometimes, a lack of correspondence between the

observed T values and the structural changes of the
hydroid populations can be verified, as observed by
Brock (1975, 1979), due to the presence of circannual
clocks that contribute to regulate their activities (Boero
& Fresi 1986). The circannual rhythms in Hydrozoa
are defined by seasonal changes in growth of the colo-
nies and in development and longevity of the hydranths
(see case study of the species Campanularia flexuosa

(Alder, 1857) in Brock 1975): these observations high-
light how the endogenous rhythms allow anticipation
of seasonal variations in the natural environment.
Long time series are one of the clearer indicators of

temperature shifts as a distribution driver in hydro-
zoans. In the Mediterranean Sea, over the last 50
years, the shallow water hydrozoan community dis-
played marked changes in species composition, bathy-
metric distribution, and reproductive timing, with
increased dispersion and survival of species of warm-
water affinity (including non-indigenous species)
throughout the year (Bianchi & Morri 2003; Puce
et al. 2009; Gravili et al. 2015a, 2015b; Gravili
2017; Martell et al. 2017) (Figure 1a,b). In particular,
Puce et al. (2009) is the only study on hydroid com-
munities in the Northern Mediterranean Sea demon-
strating phenological changes linked to global
warming across a 25-year period (from 1976 to
2004). About 70% of the cold-affinity hydroid species
disappeared or were recorded in deeper areas (Puce
et al. 2009). To our knowledge, this is one of the very
few works in which invertebrate distribution in the
Mediterranean Sea is related to temperature shifts.
Following the work by Boero and Fresi (1986) is

evident that hydroids, due to their marked seasonality
in temperate seas, are extremely sensitive to climatic
changes and, therefore, the modifications observed in
the phenology of hydroid assemblages must be con-
sidered in the evaluation of the impact of global
warming on marine ecosystems. Furthermore, the
regional species pool often remained stable in terms
of species numbers but not in terms of species identity
(Puce et al. 2009). This phenomenon is due to
a combination of abiotic features and biotic interac-
tions, favouring (native and non-indigenous) species
of warm-water affinity with increased survival rate.
The same trend is observed in the hydroid community
of the Otranto Channel (years 2004–2005) (De Vito

Figure 1. Non-indigenous hydrozoan Clytia hummelincki (Leloup, 1935) (Hydrozoa: Campanulariidae): (a) colony; (b) polyps and
newborn medusa.
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2006) where warm-affinity species have expanded
their temporal distributions and reproduction into
the cold season, compared to previous records from
the whole Mediterranean Sea (Boero & Fresi 1986;
Bouillon et al. 2004; Puce et al. 2009; Gravili et al.
2015b) (Figure 2a).
Conversely, temperate cold-affinity species either

have disappeared altogether or became restricted in
their bathymetric distribution to deeper areas, during
shorter winter periods, showing a summer contrac-
tion of the occurrence of the polyp stage and/or of
medusa or gonophore budding (De Vito 2006)
(Figure 2b). Therefore, warmer waters and the
enhanced stratification imply prolonged exposure to
warmer summer conditions coupled with reduced
food resources (Coma et al. 2009), conditioning the
hydrozoan life cycles. The structural simplicity of

hydroids, together with the potential for cell re-
differentiation and the presence of multipotent inter-
stitial cells, allow alternative developmental patterns
as responses to short-term environmental changes
(Gili & Hughes 1995 and references therein;
Schmich et al. 2007). A special process of propaga-
tion, the “autotomy phenomenon”, has been
recorded for example in a few athecate species prob-
ably in response to changes in environmental factors,
such as changes in temperature and oxygen concen-
tration (Moore 1939; Berrill 1948; Tardent 1963,
1965; Rungger 1969 and references therein).
Laboratory experiments with some hydroid species
showed that temperature influences nutrition and
food assimilation (Kinne 1957; Kinne &
Paffenhöfer 1965; Paffenhöfer 1968) and the life-
cycles of certain hydroids and hydromedusae
(Moore 1939; Kinne 1956a, 1956b; Werner 1963
and references therein). It has been demonstrated in
fact that temperature is a critical factor in stimulating
or preventing hydroid reproduction (see papers of
Berrill & Nishihira, listed in Gili & Hughes 1995;
Hamond 1957; papers of Werner, listed in Jarms
1987; Kawamura & Kubota 2008). Several research-
ers (Boero et al. 1986; Arillo et al. 1989; Di Camillo
et al. 2012) agree with a model of degenerative pro-
cesses of populations of Eudendrium glomeratum
Picard, 1952 and E. racemosum (Cavolini, 1785) not
genetically predetermined but controlled by some
environmental factors (among these, the tempera-
ture) as well as hydrozoan sex-determination (see
the case studies of a few Hydrozoa genera such as
Clytia and Turritopsis) dependent on environmental
conditions with the dominance of males or females
related to the sea water conditions (Carré & Carré
2000; Martell et al. 2016).
In Hydrozoa genetic sex determination is

a labile character and is characterized by
a remarkable plasticity (Carré & Carré 2000)
with tendency of reaching sexual maturity at
early stages with increasing temperatures
(Piraino et al. 1996; Carlà et al. 2003; Martell
et al. 2016). Even bud development can be
altered by sudden changes in temperature (see
Berrill 1953 for Sarsia tubulosa (M. Sars,
1835)). Temperature shifts may thus drive devel-
opmental watches of germ cells determination
and differentiation, leading to seasonal, latitudi-
nal or depth-dependent sex determination, as
well as life-cycle inversion to maximize offspring
production (Piraino et al. 2004).
The description of ontogeny reversal (a medusa

that metamorphoses into a hydroid) in Turritopsis
dohrnii (Weismann, 1883) under environmental

Figure 2. (a) Trend (temporal window range of the polyp stage
and reproduction) of the hydrozoan community with cold-affinity
species of the Otranto Channel (years 2004–2005). (b) Trend
(temporal window range of the polyp stage and reproduction) of
the hydrozoan community with warm-affinity species of the
Otranto Channel (years 2004–2005) compared to previous
records from the whole Mediterranean Sea.
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stress (Piraino et al. 1996, 2004; Carlà et al. 2003;
Martell et al. 2017) involves the contribution of
trans-differentiation, I-cell-proliferation processes
(Piraino et al. 1996), and the activation of cell-
death programs (Carlà et al. 2003) confirming that
development process must be considered “as an
orchestration of both animal-encoded ontogeny
and environmental interactions” (Bosch et al.
2014).

Scyphozoa

Many of the problematic bloom-forming cnidarian
species are members of the class Scyphozoa. In the
Mediterranean Sea, the most conspicuous and
abundant jellyfish species belonging to this group
are Aurelia spp., Cotylorhiza tuberculata (Macri,
1778), Rhizostoma pulmo (Macri, 1778) and the
mauve stinger Pelagia noctiluca (Forsskål, 1775).
The first three species count with a complex tripha-
sic life cycle, consisting of a planula larva, an asexu-
ally reproducing benthic polyp and a pelagic ephyra/
medusa stage (Hamner & Dawson 2009); on the
other hand, P. noctiluca has a holoplanktonic life
cycle, whose planula larva directly develops into
the pelagic ephyra (i.e. without an intermediate
polyp stage), and eventually into the adult medusa
stage (Rottini Sandrini & Avian 1983).
Several studies focused on the effects and influ-

ence of different environmental factors on the meta-
bolism and responses to seasonal cycles of pelagic
jellyfish and benthic polyp stages (e.g. Morand et al.
1987; Youngbluth & Båmstedt 2001; Møller &
Riisgård 2007; Lucas et al. 2012); especially in
terms of periodic activities such as migration and
reproduction (synchronising annual cycles of repro-
duction and influencing reproductive outputs)
(Lucas 2001; Boero et al. 2016). Many jellyfish
species, usually inhabiting coastal and shelf ecosys-
tems, are tolerant of a wide range of environmental
conditions (Arai 1997; Lucas 2001). Even if we have
scarce information about the thermal preferences of
the aforementioned species, their population
increases suggest that they are able to take advantage
of elevated temperatures, which probably lengthens
their reproductive periods (Boero et al. 2016).
Seawater temperature, together with quantity and

quality of available food resources, are known as
major drivers of gonadal outputs (Stimson 1987;
Harland et al. 1992; Ben-David-Zaslow &
Benayahu 1999). Studies focused on Aurelia spp.
jellyfish suggested that the restricted food availability
limited the energy investment in sexual reproduction
by the production of few, large planulae larvae,

while the well-fed medusae adopted an opportunis-
tic strategy by producing many small planulae
(Lucas & Lawes 1998). Temperature also affected
specific growth and clearance rate of Aurelia
ephyrae, which increase exponentially with this fac-
tor, but both, growth and clearance rates markedly
decreased at high temperatures values (Møller &
Riisgård 2007). Scyphozoans asexual reproduction
would also be influenced by water warming. Some
studies showed that elevated temperature by itself or
in combination with high feeding frequency (due to
raised zooplankton preys abundance) increased bud-
ding rate and bud size in Aurelia polyps populations
worldwide (Willcox et al. 2007; Liu et al. 2009; Han
& Uye 2010; Purcell et al. 2012; Sokołowski et al.
2016, and references therein). Equally, the process
of strobilation in Aurelia has most frequently been
correlated with changing temperature, irradiance
and food supply, although no variable has been
singled out as the major regulator (Lucas 2001;
Purcell 2007; Holst 2012). Similar results have
also been demonstrated in Rhizostoma pulmo and
Cotylorhiza tuberculata (two of the most common
Mediterranean native jellyfish species), presenting
faster planulae settlement, increasing number of
produced buds and new medusae (ephyrae) at
higher temperatures (Kogovšek et al. 2010; Prieto
et al. 2010; Astorga et al. 2012; Purcell et al. 2012;
Ruiz et al. 2012)
Outbreaks of Pelagia noctiluca, the most abundant

jellyfish in the Mediterranean Sea, seem to be asso-
ciated with warmer winters and cold summers
(Malej & Malej 2004; Rosa et al. 2013). In
P. noctiluca the metabolism is directly proportional
to the temperature oscillations (Rottini Sandrini &
Avian 1983; Malej et al. 1986; Morand et al. 1987).
A decrease in temperature causes decreasing swim-
ming rates, a reduced capacity to find food and
slower digestion times (Rottini Sandrini & Avian
1989; Giorgi et al. 1991). In contrast, temperature
increase results in higher metabolism rates and
greater food requirements. This would be in agree-
ment with Rosa et al. (2013) who suggested that too
high temperatures might have adverse effects on
P. noctiluca populations in the Strait of Messina
(Italy). Negative relationship between medusa abun-
dance and temperature suggested that the exposure
to high temperatures put Pelagia under an evident
metabolic stress, disappearing at least from the sur-
face layers. Lilley et al. (2014) proposed that vertical
migration between day and night observed in this
species (Ferraris et al. 2012) might be a strategy
adopted to mitigate adverse temperature effects,
especially in the warm season. Thus, when tempera-
ture becomes too high, specimens show a decrease
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of activity (Rottini-Sandrini 1982) and jellyfish
probably migrate vertically to deeper and colder
water layers.
Swarms of this voracious zooplanktivore would be

directly influenced by food availability and favourable
environmental conditions (Rottini Sandrini & Avian
1991). Local-scale factors related to high primary pro-
duction may lead to increased abundance of herbivor-
ous crustacean prey and to higherP. noctiluca individual
growth, as well as reproduction (Kogovšek et al. 2010)
and population blooms (Boero 2013). Sexual repro-
duction requires a large investment of energy for the
development of gonadal tissues and reproductive suc-
cess directly depends on the amount of ingested food or
on previously stored reserves (Fernández & Camacho
2005; Rossi et al. 2017). In this species, water tempera-
ture plays a key role in gonadal and oocyte develop-
ment, growth, and gamete differentiation. Milisenda
et al. (2018) observed that in the Strait of Sicily,
P. noctiluca spawning events and egg fertilization
occurred mainly in May and October, when the sea
surface temperature was around 18–20°C. Fecundity
Index and gonadosomatic indexwere used as indicators
of spawning event, since a reduction of these indices
with time suggests a release of mature eggs in the envir-
onment. Two different periods of decreasing fecundity
index were identified: from April to July (mean tem-
perature 19.5°C) and from September to December
(mean temperature 20°C) (Figure 3). At this tempera-
ture, the time needed for planula metamorphosis into
ephyrae is only 92 h, while at 13°C, metamorphosis
may require up to 168 h (Avian & Rottini Sandrini
1991), thereby increasing the risk of mortality by pre-
dation (Avian 1986).
The female gonadal organic matter content may

represent another useful proxy to understand repro-
ductive dynamics of jellyfish, as a reflection of dif-
ferential energy investments between somatic and
gonadic tissues, which may fluctuate according to
endogenous and environmental control mechanisms
(e.g. food abundance and temperature) (Olive
1985). The content of organic matter (OM) in the
female gonads of P. noctiluca was different in the two
potential spawning periods. The highest gonadal
OM value was recorded in late autumn, with poor
quality and quantity of available zooplankton food
(Ribera d’Alcalá et al. 2004); conversely, a low
gonadal OM content was observed in spring, at the
time of the highest food availability (Milisenda et al.
2018). Indeed, an increased amount of organic mat-
ter invested in the production of offspring may be
considered as a strategy to ensure reproductive suc-
cess under food shortage conditions (Olive 1985).

Even if increasing temperature may impair jelly-
fish metabolism and, at the same time, may produce
an ecosystem depletion, these organisms seem to be
well adapted to survival in unfavourable conditions.
The ability to produce resting stages, to modify the
number and size of eggs or planulae to increase the
ephyrae survivor probability, or to shrink for at least
a month while still reproducing are different strate-
gies that have to be considered in this complex
framework (Larson 1987; Lucas & Lawes 1998;
Milisenda et al. 2018). These characteristics may
open up new ecological space for jellyfish in
a future warmer environment, causing an increase
in their spatiotemporal distribution that may affect
Mediterranean ecological communities.

Anthozoa

Another group potentially affected in its reproduc-
tive traits by climate change in the Mediterranean
Sea is the class Anthozoa. Benthic suspension fee-
ders such as anthozoans depend on the water col-
umn production for feeding (Gili & Coma 1998).
Quantity and quality of available food control the
metabolism of these organisms (Coma et al. 1998;

Figure 3. Temporal trend of gonadosomatic (GSI) and fecundity
(FI) indexes for the scyphomedusae Pelagia noctiluca in the Strait
of Messina (Italy). Together with sea surface temperature data
are possible to observe two different periods of spawning: from
April to July (mean sea surface temperature 19.5°C) and from
September to December (mean sea surface temperature 20°C)
from Milisenda et al. (2018).
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Rossi et al. 2006a; Viladrich et al. 2017) and may
affect their health status and biological functions
(Rossi et al. 2017). The principal anthozoan groups
in the Mediterranean benthos are the octocorals,
such as gorgonians and alcyonarians (Sará 1969;
True 1970; Gili & Ros 1985; Ballesteros 2006).
The main reproductive modes found in this group
are internal or external brooding (Kahng et al.
2011), relying in both cases on lecithotrophic pla-
nula larvae for their dispersal (Fautin 2002).
Internal brooders release larvae directly, whereas
surface brooders and broadcast spawners release
mature oocytes (for further external fertilization) or
zygotes that will develop into planulae larvae
(Kahng et al. 2011). The larval stage is a critical
life phase with high mortality rates that forced the
evolution of several strategies to increase survival
(Strathmann 1985). Spawning triggers include
environmental factors such as temperature, moon
phases, day length, food availability, and tidal flux,
among others. However, the synergy of these factors
that ultimately prompts larval release is not comple-
tely understood (Harrison & Wallace 1998; Kahng
et al. 2011; Crimaldi 2012; Heyward & Negri
2012).
Spawning takes place in late spring and summer

in the studied octocoral species (e.g. Alcyonium cor-
alloides (Pallas, 1766) in late spring; Eunicella singu-
laris (Esper, 1791) and Paramuricea clavata (Risso,
1826) in late spring-early summer; Alcyonium acaule
Marion, 1878, Corallium rubrum (Linnaeus, 1758)
and Leptogorgia sarmentosa (Esper, 1789) in sum-
mer) (Coma et al. 1995; Tsounis et al. 2006; Gori
et al. 2007, 2012; Ribes et al. 2007; Rossi & Gili
2009; Fiorillo et al. 2012; Quintanilla et al. 2013),
in coincidence with its higher lipid contents (Figures
4 and 5). Previous studies showed similar spawning
timing for some of these Mediterranean octocorals
in other NW Mediterranean areas (Vighi 1972;
Santangelo et al. 2003; Gori et al. 2007; Linares
et al. 2008b), and other anthozoan species showed
the same late spring-summer larval release
Leptosammia pruvoti (Lacaze-Duthiers), 1897
(Goffredo et al. 2005), Cladocora caespitosa
(Linnaeus, 1758) (Kruzic et al. 2008), Caryophyllia
inornata (Duncan, 1878) (Goffredo et al. 2012)).
Only in Parazoanthus axinellae (Schmidt, 1862)
does spawning occur in late autumn, probably
because it has a strong asexual component in its life-
cycle evident in late summer time (Previati et al.
2010a).
The phenomenon of lecithotrophic larvae released

at the beginning or in the middle of the constraining
summer phase appears counterintuitive, as the

Mediterranean summer is characterized by clear
water, low plankton concentration and nutrient
levels and seston scarcity (Estrada 1996; Rossi &
Gili 2005). This is accompanied by high water tem-
peratures in the surface, which results in high basal
metabolic energy consumption especially in
anthozoans (Coma et al. 2002; Rossi et al. 2006b;
Previati et al. 2010b). Transparent and warm waters
contain low available food (Rossi & Gili 2005).
These conditions of low food concentration and
availability imply that adult colonies have to rely
on energetic reserves, which are however, depleted
after investing into reproduction (Coma et al. 1998;
Rossi et al. 2006a; Gori et al. 2012). Thus, spawn-
ing and release of larvae in summer imply that
lecithotrophic larvae of anthozoans settle and meta-
morphose few weeks before phytoplankton concen-
tration rises in early fall (Estrada 1996; Rossi & Gili
2005; Siokou-Frangou et al. 2010), supplying mod-
erate-high amounts of food. The fact that lecitho-
trophic larvae contain energy reserves that allow
them to settle, metamorphose and also grow the
first polyps without the need to feed (Benayahu &
Loya 1984; Viladrich et al. 2016, 2017), suggests

Figure 4. Four common species of octocorals (Eunicella singularis,
Paramuricea clavata, Leptogorgia sarmentosa, Corallium rubrum)
have their spawning period in late spring-early summer (from
late May to early August). A higher water stratification and food
depletion may affect their successful settlement: they depend on
the environmental parameters and phytoplankton blooms of early
autumn to face the first life stages. In the figure, the lipid max-
imum accumulation of mature colonies is in spring, when the
lipids of the seston are abundant and, more important, available.
In summer, the lipid concentration in the water column is high,
but the particle concentration and the water movement low.
Redrawn from Rossi et al. (2017).
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that larvae might already have developed efficient
feeding anatomical structures when food availability
increases in autumn. Therefore, size and nutritional
condition (i.e. energy stored) of lecithotrophic larvae
might be a key factor to understand larval survival
and thus recruitment, as well as new settlers mortal-
ity (Isomura & Nishihira 2001; Viladrich et al.
2017).
Spawning at the beginning and middle of the

summer trophic constraints has further advantages.
Larvae settle and metamorphose when algae (espe-
cially the fleshy ones, Ballesteros 1991) and other
ephemeral suspension feeders (mainly hydrozoans
and bryozoans, Boero 1984) clearly decline in its
abundance and cover, avoiding trophic shadowing
(Zabala & Ballesteros 1989; Coma et al. 2000). The
settling and metamorphose of the larvae into the
feeding polyp could thus be delayed from weeks to
months (Weinberg & Weinberg 1979; Benayahu &
Loya 1984), waiting for the appropriate moment or
substrate to settle. Longevity and competence peri-
ods of the released larvae are related, among other
things, to its energy content. The knowledge of
initial amount of energy contained within a larva
would thus allow estimation of the time-length
elapse that metamorphosis can be delayed
(Richmond 1987, 1988; Zaslow & Benayahu 2000;
Martínez-Quintana et al. 2015).
After spawning, the Mediterranean anthozoans

almost depleted such energy storage molecules
(Rossi et al. 2006a; Rossi & Tsounis 2007; Gori
et al. 2012; Viladrich et al. 2016, 2017). These
observations agree with the expected physiological
changes associated with a summer energy shortage

(reduced polyp activity, colony dormancy, low oxy-
gen consumption, depletion of energy storage) and
with an annual pattern of investment in growth and
reproduction of the gorgonian species (Garrabou
1999; Coma et al. 2002; Rossi 2002; Rossi et al.
2006a). Regarding the Mediterranean species, we
hypothesize therefore that larvae metamorphose
and develop the first feeding polyp during late sum-
mer, thus being able to start feeding from late
August to October (when the first signals of instabil-
ity of the thermocline and the second peak of pri-
mary production in the Mediterranean sea occur,
Estrada 1996; Ribera d’Alcalá et al. 2004; Rossi &
Gili 2005). Recruits (and adults) will face a second
trophic constraint in late autumn. In this period, the
available food is very scarce due to the high hydro-
dynamism (resuspension) and the settling organic
matter is of very low quality (Grémare et al. 1997,
2003; Rossi et al. 2003; see Figure 3). This food,
with poor nutritive value, force the depletion of the
energy stored (Rossi et al. 2006a, 2012; Rossi &
Tsounis 2007) and stresses adult colonies (Rossi
et al. 2006b), being probably a source of mortality
for new recruits.
The described reproductive features and the lar-

val release strategy of the studied octocorals spe-
cies make them highly sensitive to global climate
change (especially in shallow areas, above 40
meters depth). Recent models highlight that
water stratification in the Mediterranean Sea may
last for longer periods and warmer waters may
stress non-mobile organisms (Galli et al. 2017).
Doney et al. (2009) suggested that in warm and
cold temperate seas, higher temperatures could
revert in a stronger stratification of the water col-
umn, affecting phytoplankton dominance and pro-
ductivity. In this sense, Smetacek and Cloern
(2008) also suggested that in temperate coastal
areas, secondary production in pelagic ecosystems
is already changing, affecting the potential quality
of food transferred to other organisms. Whether
the food availability for benthic suspension feeders
would be affected by elevated temperatures is not
clear, but it has been shown that under anomalous
warming episodes in shallow water adults of
P. clavata, E. singularis and C. rubrum suffer from
partial or total tissue loss (Garrabou et al. 2001;
Linares et al. 2005, 2008a; Rossi & Tsounis
2007). Also the new recruit mortality in shallow
populations is very high when compared to deeper
populations (Bramanti et al. 2005; Coma et al.
2006; Linares et al. 2008a). Viladrich et al.
(2016), Viladrich et al. (2017) showed that
mother care (i.e. the energy invested by mother

Figure 5. Spawning of Paramuricea. This anthozoan is a surface
brooder that invests most of its energy output in producing the
female eggs that would be fertilized in a brief time-lapse.
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gorgonian colonies to the offspring) will be crucial
to understand the potential survival in a warmer
and less productive oceans. Within the context of
global change, there is a risk that the period of
trophic crisis might be significantly prolonged to
the point that the capacity of the energy reserves
in lecithotrophic larvae would not last until the
arrival of favourable feeding conditions in early
autumn. This situation could be even worse if
the spawning of these species would be triggered
earlier by the increase in temperature. Asexual
reproduction may enable some individuals to sur-
vive catastrophic mortality events such as warming
episodes and then expand following the perturba-
tion (Lasker & Coffroth 1999). However, chronic
stress that reduces recruitment will have less
obvious effects on these clonal taxa and may be
the key to understand future composition of
benthic communities. Climate change could lead
to partial recruitment failure in the affected spe-
cies, with major changes in the population struc-
ture and dynamics, and a drastic change in the
ecosystem functioning. These combined factors
may be crucial to understand how seascape will
change in shallow Mediterranean benthic
communities.

Conclusions

Looking at the different seawater warming impacts on
reproductive traits in cnidarians, it seems that several
species will change its distribution patterns during the
next decades. The deficiency or total lack of time data
series constitute an obstacle to understanding the bio-
logical response to climate change in the
Mediterranean (Bianchi 1997; Bianchi & Morri
2004; Bianchi et al. 2018), giving little chance to
make a clear picture of what is really happening with
hydrozoans, scyphozoans and anthozoans. However,
some cues can be envisaged. The most affected popu-
lations will be, in a midterm, those living in shallow
waters. The sea surface warming, responsible for mas-
sive mortalities due to a prolonged high-temperature
situation (Garrabou et al. 2009), is already shaping the
new seascape. Temperature, but also water stratifica-
tion and changes in the energy storage capability, will
be key factors to understand reproductive trends in
organisms that are used to live in a warm temperate
sea upon certain primary-productivity conditions.
Understanding the reproductive cycles and the poten-
tial dispersion of cnidarians in the Mediterranean Sea
will be essential if we want to have a clear idea of what
will happen at the level of trophic ecology, species

interaction and future ecosystem functioning in this
warm temperate sea that is in a transitional state.
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