

Trawling disturbance in soft-sediment ecosystems: tracing carbon sequestration

Francesco Pellerito^{1,2*}, Maria Cristina Mangano^{2,3}, Mar Bosch-Belmar^{1,2} and Gianluca Sarà^{1,2}

*francesco.pellerito@unipa.it

¹Department of Earth and Marine Sciences (DiSTEM), University of Palermo, Viale delle scienze, Ed.16, 90128 Palermo, Italy ²NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy ³Stazione Zoologica Anton Dohrn, Sicily Marine Centre - Lungomare Cristoforo Colombo (complesso Roosevelt), Palermo, Italy.

AIM

Assess the impact of bottom trawling on carbon stocks in softsediment ecosystems and in Marine Animal Forests (MAFs)

- Estimate recovery half-times and carbon-return-on-closure metrics;
- Identify threshold trawling intensities beyond which MAFmediated sequestration collapses;
- Generate actionable benchmarks for climate-smart fisheries management and convert the tons of carbon fixed or lost into a 'carbon coin'.

METHODOLOGY

- Analyses on sediments and water column samples will help us to assess carbon fluxes dynamics following trawling activity, quantifying resuspended carbon and investigating the fate of these carbon storages.
- Investigation on carbon and Lipids, Proteins and Carbohydrates (LPC) content and stress biomarkers presence will allow to establish MAFs health status.
- Controlled laboratory experiments will simulate single and multiple stressor conditions (e.g., sediment resuspension and changing temperature) to evaluate impacts on the performance (physiology, feeding efficiency) of key MAF species.

- Sandy and muddy seabed ecosystems are key components of marine carbon cycling, contributing to climate regulation through carbon storage and nutrient flux modulation.
- Anthropogenic activities such as bottom trawling disturb sediments, potentially resuspending and oxidizing buried carbon, and compromising long-term carbon sequestration capacity and conservation status of Marine Animal Forest (MFA).

EXPECTED CONTRIBUTION

Linking human impacts on carbon storage and MAFs community to actionable pathways for sustainable ocean management.

NORMAL CONDITION

SIMULATED

